Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 4.
-
Моделирование полета осколков метеорного тела с учетом вращения
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 593-612Алгоритм решения сопряженной аэродинамической и баллистической задач, разработанный на основе метода моделирования с помощью системы сеток, дополнен расчетным механизмом, позволяющим учитывать перемещение и вращение тел относительно центров масс. Для заданной конфигурации тел решается задача обтекания методом установления, после этого состояние системы перерассчитывается через малый промежуток времени. Итерационным способом оказывается возможным проследить динамику системы на больших интервалах времени. Алгоритм реализован для исследования полета системы тел с учетом их относительного положения и вращения. Выполнено тестирование алгоритма на задаче обтекания тела сегментально-конической формы. Показано хорошее согласование результатов с экспериментальными исследованиями. Алгоритм применен для расчета задачи о сверхзвуковом полете вращающегося тела. Для тел прямоугольной формы, имитирующих удлиненные осколки метеорного тела, показано, что для удлиненных тел аэродинамически более устойчивым положением является полет с большей по площади стороной поперек направления полета. Это приводит фактически к полету тел с максимально возможным аэродинамическим сопротивлением из-за максимальной площади миделя. Алгоритм применен для расчета задачи о разлете двух одинаковых тел прямоугольной формы с учетом их вращения. Вращение приводит к тому, что тела разлетаются не только под действием расталкивающей аэродинамической силы, но и дополнительной боковой силы из-за приобретения угла атаки. Скорость разлета двух осколков метеорного тела удлиненной формы при учете вращения увеличивается до трех раз по сравнению с вариантом, когда предполагается, что тела не вращаются. Исследование проведено в целях оценки влияния различных факторов на скорость разлета осколков метеорного тела после разрушения для построения возможных траекторий выпавших на землю метеоритов. Разработанный алгоритм решения сопряженной аэродинамической и баллистической задач с учетом относительного перемещения и вращения тел может быть использован для решения технических задач, например для исследования динамики разделения ступеней летательного аппарата.
Ключевые слова: моделирование, метеорное тело, аэродинамические характеристики, динамика полета, фрагментация, интерференция, траектория, вращение.Просмотров за год: 6. -
Моделирование конвективно-радиационного теплопереноса в дифференциально обогреваемой вращающейся полости
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 195-207Просмотров за год: 20.Проведено математическое моделирование нестационарных режимов естественной конвекции и поверхностного излучения в замкнутой вращающейся квадратной полости. Рассматриваемая область решения имела две противоположные изотермические стенки, поддерживаемые при постоянных низкой и высокой температурах, остальные стенки являлись адиабатическими. Стенки считались диффузно-серыми. Анализируемая полость вращалась с постоянной угловой скоростью относительно оси, проходящей через центр полости и ориентированной ортогонально области решения. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости» на основе приближений Буссинеска и диатермичности рабочей среды, была реализована численно методом конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А. А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А. А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Разработанный вычислительный код был протестирован на множестве сеток, а также верифицирован путем сопоставления полученных результатов при решении модельной задачи с экспериментальными и численными данными других авторов.
Численные исследования нестационарных режимов естественной конвекции и поверхностного теплового излучения в замкнутой вращающейся полости проведены при следующих значениях безразмерных параметров: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. Все распределения были получены для двадцатого полного оборота полости, когда наблюдается установление периодической картины течения и теплопереноса. В результате анализа установлено, что при малой угловой скорости вращения полости возможна интенсификация течения, а дальнейший рост скорости вращения приводит к ослаблению конвективного течения. Радиационное число Нуссельта незначительно изменяется при варьировании числа Тейлора.
-
Анализ возможности использования программного комплекса FlowVision для исследования гидродинамических воздействий на возвращаемый аппарат и динамики его движения при посадке на воду
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 47-55Просмотров за год: 10.В данной работе представлены результаты верификации исследований гидродинамических воздействий на возвращаемый аппарат сегментально-конической формы при посадке на воду. Для анализа используется программный комплекс FlowVision. Целью работы является подтверждение возможности использования данного программного комплекса для решения поставленных задач на основе сравнения расчетных и экспериментальных данных, полученных на моделях посадочного модуля корабля Apollo и возвращаемого аппарата пилотируемого транспортного корабля нового поколения, разрабатываемого в РКК «Энергия». Сравнивались значения давлений на поверхности моделей аппаратов в процессе погружения в воду и параметры движения центра масс.
Показано хорошее согласование экспериментальных и расчетных данных по силовому действию на конструкцию аппарата при приводнении и параметрам его движения в водной среде. Компьютерное моделирование адекватно отражает влияние на процесс приводнения начальных скоростей и углов входа аппарата в водную среду.
Использование компьютерного моделирования обеспечивает одновременное определение всей информации, необходимой для исследования в процессе проектирования изделия особенностей посадки на воду: гидродинамические воздействия для расчета прочности конструкции, параметры и динамику движения центра масс и вращения аппарата вокруг центра масс с целью оценки условий приводнения экипажа, а также остойчивость аппарата после приводнения.
Полученные результаты подтверждают необходимость использования программного комплекса FlowVision для исследования процесса приводнения аппарата и исследований влияния различных режимов посадки в широком диапазоне изменения начальных условий, что позволяет существенно сократить объём дорогостоящих экспериментальных исследований и реализовать условия посадки, трудновоспроизводимые в физическом эксперименте.
-
Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643Просмотров за год: 27.Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.
-
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы. -
Метод гибридных сеток в задачах внешней и внутренней газовой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 543-565На основе метода моделирования задач газовой динамики с помощью системы сеток реализован алгоритм для решения нестационарной задачи с движущими телами. Алгоритм учитывает перемещение и вращение тел по заданному закону движения. Алгоритм применен для исследования обтекания бесконечной решетки, составленной из цилиндров с эллиптическим сечением, которые либо перемещаются поперек потока, либо вращаются с изменением угла атаки. Для моделирования обтекания тел с острой кромкой, характерных для профилей турбомашин, реализован алгоритм построения сетки типа С с включением некоторой области за профилем. Программа моделирования течения около профиля реализована в рамках моделей уравнений Эйлера, уравнений Навье – Стокса в приближении тонкого слоя с ламинарной вязкостью и турбулентной вязкостью в рамках алгебраической модели вязкости. Также программа была адаптирована для решения задач внутренней газодинамики турбомашин. Для этого была изменена методика задания граничных условий на входе и выходе из расчетной области со скорости на перепад давления, а также на боковых границах со свободного потока на периодичность. Это позволило моделировать течение газа в межлопаточных каналах компрессоров и турбин газотурбинных двигателей. Для отработки алгоритма были проведены серии расчетов аэродинамических параметров нескольких турбинных решеток на различных дозвуковых и сверхзвуковых режимах и их сравнение с экспериментом. Расчеты параметров турбинных решеток были проведены в рамках модели невязкого и вязкого газа. Сравнение расчета и эксперимента проводилось по распределению параметров газа около профиля, а также по потерям энергии потока в решетке. Расчеты показали применимость и корректность работы программы для решения данного класса задач. Для тестирования программы на задачах внешней дозвуковой аэродинамики были выполнены расчеты аэродинамических характеристик изолированного аэродинамического профиля в невозмущенном потоке. Полученные результаты позволяют утверждать о применимости метода гибридных сеток к различным классам задач прикладной газовой динамики.
-
Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 869-882В данной работе представлено описание конструкции водного робота, движущегося по поверхности жидкости и приводимого в движение двумя внутренними подвижными массами. Корпус водного робота в сечении имеет форму симметричного крылового профиля с острой кромкой. На данном прототипе две внутренние массы перемещаются по окружностям и приводятся во вращение за счет одного двигателя постоянного тока и зубчатого механизма, передающего вращательный момент от двигателя к каждой массе. В качестве управляющего воздействия используются угловые скорости подвижных масс, а разработанная кинематическая схема передачи вращения от двигателя к подвижным массам позволяет реализовать вращение двух масс с равными по модулю угловыми скоростями, но при этом разным направлением вращения. А также на корпус данного робота имеется возможность устанавливать дополнительные хвостовые плавники различных форм и размеров. Также в работе для данного объекта представлены уравнения движения, записанные в форме уравнений Кирхгофа для движения твердого тела в идеальной жидкости, дополненные слагаемыми вязкого сопротивления. Представлено математическое описание дополнительных сил, действующих на гибкий хвостовой плавник. С разработанным прототипом робота проведены экспериментальные исследования по влиянию различных хвостовых плавников на скорость передвижения в жидкости. В данной работе на робота устанавливались хвостовые плавники одной формы и размеров, при этом обладающие разной жесткостью. Эксперименты проводились в бассейне с водой, над которым устанавливалась камера, на которую были получены видеозаписи всех экспериментов. Дальнейшая обработка видеозаписей позволила получить перемещения объекта, а также его линейные и угловые скорости. В работе показано различие в развиваемых роботом скоростях при движении без хвостового плавника, а также с хвостовыми плавниками, имеющими разную жесткость. Приведено сравнение развиваемых роботом скоростей, полученных в экспериментальных исследованиях, с результатами математического моделирования системы.
Ключевые слова: мобильный робот, водный робот, моделирование движения, экспериментальные исследования. -
Управление движением тела с помощью внутренних масс в вязкой жидкости
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 445-460Просмотров за год: 21. Цитирований: 2 (РИНЦ).Данная статья посвящена изучению самопродвижения тел в жидкости за счет действия внутренних механизмов, без изменения внешней формы тела. В работе представлен обзор теоретических работ, обосновывающих возможностьда нного перемещения в идеальной и вязкой жидкостях.
Рассмотрен частный случай самопродвижения твердого тела по поверхности жидкости за счет движения двух внутренних масс по окружностям. В работе представлена математическая модельдвиж ения твердого тела с подвижными внутренними массами в трехмерной постановке. Данная модельу читывает трехмерные колебания тела при движении, возникающие под действием внешних сил — силы тяжести, силы Архимеда и сил, действующих на тело со стороны вязкой жидкости.
В качестве тела рассмотрен однородный эллиптический цилиндр с килем, расположенным вдоль большей диагонали. Внутри цилиндра расположены две материальные точечные массы, перемещающиеся по окружностям. Центры окружностей лежат на наименьшей диагонали эллипса на равном удалении от центра масс.
Уравнения движения рассматриваемой системы (тело с двумя материальными точками, помещенное в жидкость) представлены в виде уравнений Кирхгофа с добавлением внешних сил и моментов, действующих на тело. Для описания сил сопротивления движению в жидкости выбрана феноменологическая модель вязкого трения, квадратичная по скорости. Коэффициенты сопротивления движению, используемые в модели, определялись экспериментально. Силы, действующие на киль, определялись с помощью численного моделирования колебаний киля в вязкой жидкости с использованием уравнений Навье–Стокса.
В данной работе была проведена экспериментальная проверка предложенной математической модели. Представлено несколько серий экспериментов по самопродвижению тела в жидкости с помощью вращения внутренних масс с разными скоростями вращения. Исследована зависимостьс редней скорости продвижения, размаха поперечных колебаний в зависимости от частоты вращения внутренних масс. Проведено сравнение полученных экспериментальных данных с результатами, полученными в рамках предложенной математической модели.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"