Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Приближенная модель осесимметричного течения несжимаемой жидкости в бесконечно длинном круглом цилиндре, стенки которого составлены из упругих колец, основанная на решениях уравнения Кортевега – де Фриза
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 375-394Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.
-
Математическое моделирование распространения тромбина в процессе свертывания крови
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.
Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.
Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.
Ключевые слова: бегущие волны, свертывание крови.Просмотров за год: 10. Цитирований: 1 (РИНЦ). -
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.Просмотров за год: 31. -
Анализ гемодинамики в идеализированном соединении брюшной аорты и почечной артерии средствами вычислительной гидродинамики: предварительное исследование для определения местонахождения атеросклеротической бляшки
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 695-706Атеросклеротические заболевания, такие как атеросклероз сонной артерии и хронические болезни почек, являются основными причинами смерти во всем мире. Возникновение таких атеросклеротических болезней в артериях зависит от сложной динамики кровотока и ряда гемодинамических параметров. Атеросклероз почечных артерий приводит к уменьшению артериальной эффективности и в конечном счете приводит к почечной артериальной гипертензии. В данной работе делается попытка определить локализацию атеросклеротической бляшки в брюшной аорте человека в окрестности соединения с почечной артерией с использованием средств вычислительной гидродинамики (CFD).
Области, подверженные атеросклерозу, в идеализированном соединении брюшной аорты и почечной артерии человека определяются в результате вычислений некоторых гемодинамических показателей. При вычислениях используется точная реологическая модель крови человека, предложенная Yeleswarapu. Кровоток вычисляется в трехмерной модельной области соединения артерий с использованием пакета ANSYS FLUENT v18.2.
Вычисленные гемодинамические показатели представляют собой среднее значение напряжения сдвига на стенке сосуда (AWSS), колебательный сдвиговый индекс (OSI) и относительное время задержки (RRT). Моделирование пульсирующего течения (f = 1.25 Гц, Re = 1000) показывает, что малое значение AWSS и высокий индекс OSI возникают в областях почечной артерии вниз по течению от соединения и в инфраренальном отделе брюшной аорты вблизи соединения. Высокий RRT, который является относительным индексом и зависит как от AWSS, так и OSI, как показано в данной работе, сочетается с низким AWSS и высоким OSI в краниальной части поверхности почечной артерии, проксимальной около соединения и на латеральной поверхности вблизи бифуркации брюшной аорты: это указывает, что эти области наиболее всего подвержены атеросклерозу. Результаты качественно соответствуют литературным данным. Они могут служить начальным этапом исследований и иллюстрировать пользу средств вычислительной гидродинамики (CFD) для определения местоположения атеросклеротической бляшки.
Ключевые слова: брюшная аорта, атеросклероз, гемодинамические показатели, почечная артерия, модель Yeleswarapu.Просмотров за год: 3. -
Математическое моделирование кинетики и расчет дозиметрических характеристик остеотропных радиофармацевтических лекарственных препаратов
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 647-660В отечественной медицине для радионуклидной терапии костных метастазов сегодня применяются два радиофармпрепарата: 89Sr-хлорид и 153Sm-оксабифор. Первый изних имеет много побочных эффектов, поэтому его применение ограничено. Второй доступен только в клиниках, транспортировка его в которые не занимает много времени. В настоящее время клинические исследования проходит третий радиофармпрепарат — 188Re-золерен. В связи с генераторным способом получения 188Re данный радиофармпрепарат должен стать доступным для применения во многих регионах нашей страны. Поэтому возникает необходимость в сравнительном анализе характеристик этих радиофармпрепаратов, в том числе на основе математического моделирования.
В статье рассмотрены особенности математического моделирования кинетики остеотропных радиофармацевтических лекарственных препаратов в организме человека с костными метастазами. На основе четырехкамерной модели разработан и апробирован комплекс моделирования и расчета фармакокинетических и дозиметрических характеристик радиофармпрепаратов для радионуклидной терапии костных метастазов. С использованием клинических данных идентифицированы транспортные константы модели и рассчитаны индивидуальные характеристики отечественных радиофармпрепаратов, меченных 89Sr, 153Sm и 188Re (эффективные периоды полувыведения, максимальные активности в камерах и времена их достижения, поглощенные дозы на костные ткани и метастазы, эндостальный слой кости, красный костный мозг, кровь, почки и мочевой пузырь). Получены и проанализированы зависимости «активность–время» для всех камер модели. Проведен сравнительный анализфар макокинетики и дозиметрии трех радиофармпрепаратов (89Sr-хлорид, 153Sm-оксабифор, 188Re-золерен).
Из сравнительного анализа фармакокинетических и дозиметрических характеристик этих радиофармацевтических лекарственных препаратов следует, что наилучшим изних для широкого применения во многих регионах нашей страны должен стать 188Re-золерен с учетом генераторного способа получения 188Re в условиях стационара.
Ключевые слова: математическое моделирование, ядерная медицина, дозиметрия, кинетика, радиофармпрепарат, камерная модель. -
Анализ респираторных реакций человека в условиях измененной газовой среды на математической модели
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 281-296Цель работы — обоснование и разработка методики прогноза динамики респираторных реакций человека на основе математического моделирования. Для достижения этой цели были поставлены и решены следующие задачи: разработаны и обоснованы общая структура и формализованное описание модели респираторной системы; построен и программно реализован алгоритм модели газообмена организма; проведены вычислительный эксперимент и проверка модели на адекватность на основе литературных данных и собственных экспериментальных исследований.
В данном варианте в комплексную модель вошел новый модифицированный вариант частной модели физико-химических свойств крови и кислотно-щелочного баланса. При разработке модели в основу формализованного описания была положена концепция разделения физиологической системы регуляции на активные и пассивные подсистемы регуляции. Разработка модели проводилась поэтапно. Комплексная модель газообмена состояла из следующих частных моделей: базовой биофизической модели системы газообмена; модели физико-химических свойств крови и кислотно-щелочного баланса; модели пассивных механизмов газообмена, разработанной на основе уравнений материального баланса Гродинза Ф.; модели химической регуляции, разработанной на основе многофакторной модели Грея Д.
При программной реализации модели расчеты выполнялись в среде программирования MatLab. Для решения уравнений использовался метод Рунге–Кутты–Фехлберга. При этом предполагается, что модель будет представлена в виде компьютерной исследовательской программы, позволяющей реализовать различные гипотезы о механизме наблюдаемых процессов. Рассчитаны предполагаемые величины основных показателей газообмена в условиях гиперкапнии и гипоксии. Результаты расчетов, как по характеру, так и количественно, достаточно хорошо согласуются с данными, полученными в исследованиях на испытателях. Проведенная проверка на адекватность подтвердила, что погрешность вычислений находится в пределах погрешности данных медико-биологических экспериментов. Модель можно использовать при теоретическом прогнозировании динамики респираторных реакций организма человека в условиях измененной газовой среды.
Ключевые слова: математическая модель, минутный объем дыхания, имитация, регуляция, дыхание, респираторная система, гипоксия, гиперкапния.Просмотров за год: 5. -
Моделирование одномерных нелинейных пульсовых волн в эластичных сосудах на основе решеточных уравнений Больцмана
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 707-722Просмотров за год: 2.В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.
В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.
В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.
-
Математическая модель регуляции легочной вентиляции при гипоксии и гиперкапнии
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 297-310Транспорт дыхательных газов дыхательной и кровеносной системами является одним из основных процессов, связанных с жизнедеятельностью организма человека. Значительные и/или длительные отклонения от нормальных значений концентраций кислорода и углекислого газа в крови могут приводить к существенным патологическим изменениям, вызывающим необратимые последствия: недостаток кислорода (гипоксия и ишемические явления), изменение кислотно-щелочного баланса крови (ацидоз или алкалоз) и др. В условиях меняющейся внешней среды и внутреннего состояния организма действие его регуляторных систем направлено на поддержание гомеостаза. Одним из основных механизмов поддержания концентраций (парциальных давлений) кислорода и углекислого газа в крови на нормальном уровне является регуляция минутной вентиляции, частоты и глубины дыхания за счет активности центрального и периферического регуляторов.
В данной работе предложена математическая модель регуляции параметров легочной вентиляции, которая затем используется для расчета минутной вентиляции легких при гипоксии и гиперкапнии. Модель построена с использованием однокомпонентной модели легкого и уравнений биохимического равновесия кислорода в крови и альвеолярном объеме легких. Приводится сопоставление с данными лабораторных исследований. Анализ полученных результатов показывает, что модель удовлетворительно воспроизводит динамику минутной вентиляции при гиперкапнии. Анализируются факторы, которые необходимо учесть для более точного моделирования регуляции минутной вентиляции при гипоксии.
Респираторная функция является одним из главных лимитирующих факторов организма при интенсивных физических нагрузках, характерных для спорта высших достижений. Поэтому результаты данной работы имеют значимое прикладное значения в области математического моделирования в спорте. Условия гипоксии и гиперкапнии отчасти воспроизводят тренировки в условиях высокогорья и гипоксии, целью которых является легальное повышение гемоглобина в крови у спортсменов.
Ключевые слова: гипоксия, гиперкапния, центральный регулятор, периферический регулятор, математическое моделирование.Просмотров за год: 16. -
Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.
Ключевые слова: гемостаз, тромбоз, компьютерное моделирование, фибринолиз, тромболизис, тромбоциты, тромбин, каскадсв ертывания. -
Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.
Ключевые слова: обработка данных, эксперимент, цитокин, иммунная система, пневмония, статистика, аппроксимация, расстояние Хаусдорфа.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"