Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'итерационная схема':
Найдено статей: 22
  1. Чуйко С.М., Старкова О.В., Чуйко А.С.
    Автономная нетерова краевая задача в частном критическом случае
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 337-351

    Найдены необходимые и достаточные условия существования решений нелинейной автономной краевой задачи в частном критическом случае. Характерной особенностью поставленной задачи является невозможность непосредственного применения традиционной схемы исследования и построения решений критических краевых задач, созданной в работах И.Г. Малкина, А.М. Самойленко, Е.А. Гребеникова, Ю.А. Рябова и А.А. Бойчука. Для построения решений нелинейной нетеровой краевой задачи в частном критическом случае предложена итерационная схема, построенная по схеме метода наименьших квадратов. Эффективность техники продемонстрирована на примере анализа периодической задачи для уравнения типа Хилла.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
  7. Чуйко С.М., Старкова О.В.
    Модифицированная двухшаговая итерационная техника для построения функций Матье
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 31-43

    Предложена модифицированная двухшаговая итерационная техника, построенная по схеме метода наименьших квадратов, определяющая последовательные приближения к периодическим решениям уравнения Матье и его собственным функциям, значительно превосходящие по точности ранее известные результаты.

    Просмотров за год: 1.
  8. Фомин А.А., Фомина Л.Н.
    О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880

    Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.

    В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
  9. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  10. Чуйко С.М., Старкова О.В., Кулиш П.В.
    Периодическая задача для уравнения Хилла в случае параметрического резонанса
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 27-43

    Найдены необходимые и достаточные условия существования решений нелинейной неавтономной периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Характерной особенностью поставленной задачи является необходимость нахождения как искомого решения, так и соответствующей собственной функции, обеспечивающей разрешимость периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Для построения решений периодической задачи для уравнения типа Хилла и соответствующей собственной функции в случае параметрического резонанса предложены итерационные схемы, построенные методу простых итераций, а также с использованием техники наименьших квадратов.

    Просмотров за год: 1.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.