Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Разработка системы управления беспилотного дистанционно-пилотируемого сельхозсамолета (БДПС) на базе самолета МВ-500
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 315-323Просмотров за год: 20.В статье приведены промежуточные результаты разработки системы управления дистанционно-пилотируемого сельскохозяйственного самолета (БДПС). Разработана концепция использования автоматизированного комплекса для выполнения авиахимической работ (АХР), предназначенного для обработки полей, акваторий, лесов с целью защиты от вредителей растений, внесения удобрений. Базовым компонентом комплекса является пилотируемый сельскохозяйственный самолет МВ-500 разработки ООО «Фирма «МВЕН» (г. Казань). Использование самолета в беспилотном режиме обеспечит увеличение производительности самолета, увеличит полезную нагрузку.
В статье определен состав комплекса для автоматизации АХР: самолет, наземный пункт автоматизированного управления, бортовая аппаратура для автоматизированного управления самолетом и формирования карты высот обрабатываемого участка, спутниковая система точного позиционирования, необходимая для автоматизации управления самолетом. Самолет оснащается системой автоматизированного управления, обеспечивающей дистанционное управление взлетом и посадкой и автоматическое управление траекторией полета на сверхмалой высоте при выполнении АХР и выполнения пространственных разворотов на границах обрабатываемых участков. Взлет, посадка, вывод самолета в зону выполнения АХР предлагается производить с помощью летчика оператора с наземного пункта управления. Наземный пункт управления должен обеспечивать прием и отображение на экране оператора пилотажно-навигационной информации и нескольких видов с борта самолета. Оператор может управлять поочередно несколькими самолетами на этих этапах полета с помощью органов управления наземного пункта. В дальнейшем планируется автоматизировать и эти этапы полета, оставив за летчиком- оператором функции контроля и возможности дистанционного управления в особых случаях. Для навигации самолета при выполнении АХР на борту установлена аппаратура высокоточного позиционирования RTK (Real Time Kinematic), обеспечивающая измерение с сантиметровой точностью координат и высот самолета относительно базовой станции, установленной в наземном пункте управления. Перед выполнением АХР строится трехмерная цифровая карта обрабатываемого участка путем дополнения существующих кадастровых карт измерениями высот участка, выполняемых с помощью бортовых радио и оптического высотомеров того же самолета.
К настоящему времени изготовлены и протестированы следующие компоненты системы: дистанционно управляемая модель самолета МВ-500 в масштабе 1:5, система спутникового позиционирования; система для получения изображения и телеметрической информации с борта модели; автопилот; методы получения 3-мерных цифровых карт участков и планирования траекторий полета при АХР.
-
Определение движения объектов на земной поверхности методами SAR-интерферометрии
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1047-1060Для решения задачи определения движения инфраструктурных объектов на земной поверхности применяется метод SAR-интерферометрии. Этот метод основан на получении серии детальных спутниковых снимков одного и того же участка земной поверхности в разные моменты времени. Каждый спутниковый снимок содержит амплитудную и фазовую составляющие. Для определения движения используется изменение фазовой компоненты с течением времени. Предлагается метод выделения устойчивых отражателей на серии изображений и оценивания относительного сдвига объектов, соответствующих устойчивым отражателям.
Ключевые слова: радиолокация, синтезированная апертура антенны, SAR-интерферометрия, устойчивые отражатели.Просмотров за год: 4. -
Двухпроходная модель Feature-Fused SSD для детекции разномасштабных изображений рабочих на строительной площадке
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 57-73При распознавании рабочих на изображениях строительной площадки, получаемых с камер наблюдения, типичной является ситуация, при которой объекты детекции имеют сильно различающийся пространственный масштаб относительно друг друга и других объектов. Повышение точности детекции мелких объектов может быть обеспечено путем использования Feature-Fused модификации детектора SSD (Single Shot Detector). Вместе с применением на инференсе нарезки изображения с перекрытием такая модель хорошо справляется с детекцией мелких объектов. Однако при практическом использовании данного подхода требуется ручная настройка параметров нарезки. При этом снижается точность детекции объектов на сценах, отличающихся от сцен, использованных при обучении, а также крупных объектов. В данной работе предложен алгоритм автоматического выбора оптимальных параметров нарезки изображения в зависимости от соотношений характерных геометрических размеров объектов на изображении. Нами разработан двухпроходной вариант детектора Feature-Fused SSD для автоматического определения параметров нарезки изображения. На первом проходе применяется усеченная версия детектора, позволяющая определять характерные размеры объектов интереса. На втором проходе осуществляется финальная детекция объектов с параметрами нарезки, выбранными после первого прохода. Был собран датасет с изображениями рабочих на строительной площадке. Датасет включает крупные, мелкие и разноплановые изображения рабочих. Для сравнения результатов детекции для однопроходного алгоритма без разбиения входного изображения, однопроходного алгоритма с равномерным разбиением и двухпроходного алгоритма с подбором оптимального разбиения рассматривались тесты по детекции отдельно крупных объектов, очень мелких объектов, с высокой плотностью объектов как на переднем, так и на заднем плане, только на заднем плане. В диапазоне рассмотренных нами случаев наш подход превосходит подходы, взятые в сравнение, позволяет хорошо бороться с проблемой двойных детекций и демонстрирует качество 0,82–0,91 по метрике mAP (mean Average Precision).
-
Новый биометрический подход для автоматического анализа изображений сосудистой системы сетчатки глаза
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 189-197Просмотров за год: 3.Предлагается метод автоматического выявления и диагностики сосудистых заболеваний сетчатки на ранних стадиях развития патологий. Метод опирается на новый биометрический подход, состоящий в использовании коэффициентов-признаков состояния сетчатки (здорового и патологического), вычисленных с использованием системы специальных концентрических окружностей. Новый метод позволяет на новом уровне оценить морфологический состав внутриглазных структур и выявить значимые признаки для диагностики развивающихся патологий.
-
О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.
Ключевые слова: сейсморазведка, углеводороды, формула Кирхгофа, акустические волны, упругие волны, численное моделирование.Просмотров за год: 11. -
Сравнительный анализ адаптации человека к росту объема зрительной информации в задачах распознавания формальных символов и содержательных изображений
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 571-586Мы описываем инженерно-психологический эксперимент, продолжающий исследование способов адаптации человека к росту сложности логических задач методом предъявления серий задач нарастающей сложности, которая определяется объемом исходных данных. Задачи требуют вычислений в ассоциативной или неассоциативной системе операций. По характеру изменения времени решения задачи в зависимости от числа необходимых операций можно делать вывод о чисто последовательном способе решения задач или о подключении к решению дополнительных ресурсов мозга в параллельном режиме. В ранее опубликованной экспериментальной работе человек в процессе решения ассоциативной задачи распознавал цветные картинки с содержательными изображениями. В новом исследовании аналогичная задача решается для абстрактных монохромных геометрических фигур. Анализ результата показал, что для второго случая значительно снижается вероятность перехода испытуемого на параллельный способ обработки зрительной информации. Метод исследования основан на предъявлении человеку задач двух типов. Один тип задач содержит ассоциативные вычисления и допускает параллельный алгоритм решения. Другой тип задач контрольный, содержит задачи, в которых вычисления неассоциативные и параллельные алгоритмы решения неэффективны. Задача распознавания и поиска заданного объекта ассоциативна. Параллельная стратегия значительно ускоряет решение при сравнительно малых дополнительных затратах ресурсов. В качестве контрольной серии задач (для отделения параллельной работы от ускорения последовательного алгоритма) используется, как и в предыдущем эксперименте, неассоциативная задача сравнения в циклической арифметике, представленной в наглядной форме игры «камень, ножницы, бумага». В этой задаче параллельный алгоритм требует работы большого числа процессоров с малым коэффициентом эффективности. Поэтому переход человека на параллельный алгоритм решения этой задачи практически исключен и ускорение обработки входной информации возможно только путем повышения быстродействия. Сравнение зависимости времени решения от объема исходных данных для двух типов задач позволяет выявить четыре типа стратегий адаптации к росту сложности задачи: равномерная последовательная, ускоренная последовательная, параллельные вычисления (там, где это возможно) или неопределенная (для данного метода) стратегия. Уменьшение части испытуемых, которые переходят на параллельную стратегию при кодировании входной информации формальными изображениями, показывает эффективность кодов, вызывающих предметные ассоциации. Они повышают скорость восприятия и переработки информации человеком. Статья содержит предварительную математическую модель, которая объясняет это явление. Она основана на появлении второго набора исходных данных, который возникает у человека в результате узнавания изображенных предметов.
-
Компьютерный автоматизированный анализ в задачах распознавания медицинских изображений на примере сцинтиграфии
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 541-548Просмотров за год: 3. Цитирований: 3 (РИНЦ).С помощью программы, созданной на принципах компьютерного автоматизированного анализа, на планарных сцинтиграммах скелета больных диссеминированным раком молочной железы выделены очаги гиперфиксации радиофармпрепарата. Рассчитаны гистограммные параметры: средняя яркость, гладкость яркости, третий момент яркости, однородность яркости, энтропия яркости. Установлено, что в большинстве зон скелета значения гистограммных параметров в патологических очагах гиперфиксации преобладают над аналогичными значениями в физиологических. Наиболее часто в патологических очагах гиперфиксации, как на передних, так и на задних сцинтиграммах, фиксируется преобладание показателей яркости и гладкости яркости изображения по сравнению с аналогичными показателями физиологических очагов гиперфиксации радиофармпрепарата. Отдельные показатели гистограммного анализа используются в уточняющей диагностике метастазов при математическом моделировании и интерпретации данных остеосцинтиграфии.
-
Экспериментальное выявление организации мысленных вычислений человека на основе алгебр разной ассоциативности
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 311-327Работа продолжает исследования по способности человека повышать производительность обработки информации, используя параллельную работу или повышение быстродействия анализаторов. Человек получает серию задач, решение которых требует переработки известного количества информации. Регистрируются время и правильность решения. По правильно решенным задачам определяется зависимость среднего времени решения от объема информации в задаче. В соответствии с предложенной ранее методикой задачи содержат вычисления выражений в двух алгебрах, одна из которых ассоциативная, а другая неассоциативная. Для облегчения работы испытуемых в опыте были использованы образные графические изображения элементов алгебры. Неассоциативные вычисления реализовывались в форме игры «Камень, ножницы, бумага». Надо было определить символ-победитель в длинной строке этих рисунков, считая, что они возникают последовательно слева направо и играют с предыдущим символом победителем. Ассоциативные вычисления были основаны на распознавании рисунков из конечного набора простых изображений. Надо было определить, какого рисунка из этого набора в строке не хватает, либо констатировать, что все рисунки присутствуют. В каждой задаче отсутствовало не более одной картинки. Вычисления в ассоциативной алгебре допускают параллельный счет, а при отсутствии ассоциативности возможны только последовательные вычисления. Поэтому анализ времени решения серий задач позволяет выявить последовательную равномерную, последовательную ускоренную и параллельную стратегии вычислений. В экспериментах было установлено, что для решения неассоциативных задач все испытуемые применяли равномерную последовательную стратегию. Для ассоциативных задач все испытуемые использовали параллельные вычисления, а некоторые использовали параллельные вычисления с ускорением по мере роста сложности задачи. Небольшая часть испытуемых при большой сложности, судя по эволюции времени решения, дополняла параллельный счет последовательным этапом вычислений (возможно, для контроля решения). Разработан специальный метод оценки скорости переработки входной информации человеком. Он позволил оценить уровень параллельности расчета в ассоциативных задачах. Была зарегистрирована параллельность уровня от двух до трех. Характерная скорость обработки информации в последовательном случае (примерно полтора символа в секунду) вдвое меньше типичной скорости распознавания изображений человеком. Видимо, разница времени обработки расходуется собственно на процесс вычислений. Для ассоциативной задачи в случае минимального объема информации время решения либо близко к неассоциативному случаю, либо меньше до двух раз. Вероятно, это связано с тем, что для малого числа символов распознавание практически исчерпывает вычисления для использованной неассоциативной задачи.
Ключевые слова: параллельный счет, инженерная психология, тестирование, алгебра, ассоциативность, распознавание зрительных образов.Просмотров за год: 16. -
Подходы к обработке изображений в системе поддержки принятия решений центра автоматизированной фиксации административных правонарушений дорожного движения
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 405-415В статье предлагается ряд подходов к обработке изображений в системе поддержки принятия решений (СППР) центра автоматизированной фиксации административных правонарушений дорожного движения (ЦАФАП). Основной задачей данной СППР является помощь человеку-оператору в получении точной информации о государственном регистрационном знаке (ГРЗ) и модели транспортного средства (ТС) на основании изображений, полученных с комплексов фотовидеофиксации (ФВФ). В статье предложены подходы к распознаванию ГРЗ и марки/модели ТС на изображении, основанные на современных нейросетевых моделях. Для распознавания ГРЗ использована нейросетевая модель LPRNet с дополнительно введенным Spatial Transformer Layer для предобработки изображения. Для автоматического определения марки/модели ТС на изображении использована нейросетевая архитектура ResNeXt-101-32x8d. Предложен подход к формированию обучающей выборки для нейросетевой модели распознавания ГРЗ, основанный на методах компьютерного зрения и алгоритмах машинного обучения. В данном подходе использован алгоритм SIFT для нахождения ключевых точек изображения с ГРЗ и вычисления их дескрипторов, а для удаления точек-выбросов использован алгоритм DBSCAN. Точность распознавания ГРЗ на тестовой выборке составила 96 %. Предложен подход к повышению производительности процедур дообучения и распознавания марки/модели ТС, основанный на использовании новой архитектуры сверточной нейронной сети с «заморозкой» весовых коэффициентов сверточных слоев, дополнительным сверточным слоем распараллеливания процесса классификации и множеством бинарных классификаторов на выходе. Применение новой архитектуры позволило на несколько порядков уменьшить время дообучения нейросетевой модели распознавания марки/модели ТС с итоговой точностью классификации, близкой к 99 %. Предложенные подходы были апробированы и внедрены в СППР ЦАФАП Республики Татарстан.
Ключевые слова: система поддержки принятия решений, изображение, компьютерное зрение, нейронные сети. -
Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376Просмотров за год: 31. Цитирований: 1 (РИНЦ).В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"