Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'данные':
Найдено авторов: 11
  1. Бурлаков Д.С. (Burlakov D.S.)
  2. Востриков Д.Д. (Vostrikov D.D.)
  3. Добровольский Д.Д. (Dobrovolskii D.D.)
  4. Дутбайева Д.М. (Dutbayeva D.M.)
  5. Зафиевский Д.Д. (Zafievsky D.D.)
  6. Ильясов Д.В. (Ilyasov D.V.)
  7. Кабанов Д.К. (Kabanov D.K.)
  8. Клюкин Д.А. (Klyukin D.A.)
  9. Маршаков Д.В. (Marshakov D.V.)
  10. Фёдоров Д.Д. (Fiodorov D.D.)
  11. Хачай Д.М. (Khachai D.M.)
Найдено статей: 649
  1. Аристова Е.Н., Караваева Н.И.
    Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448

    Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.

  2. Бардин Б.С., Рачков А.А., Чекина Е.А., Чекин А.М.
    О периодических режимах движения тела по горизонтальной шероховатой плоскости, реализуемых посредством перемещения двух внутренних масс
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 17-34

    Рассматривается механическая система, состоящая из твердого тела и двух масс, которые перемещаются внутри тела по взаимно перпендикулярным направляющим. Тело имеет плоскую грань, которая опирается на горизонтальную шероховатую плоскость. Движение масс внутри тела происходит в вертикальной плоскости по гармоническому закону с одним и тем же периодом. Предполагается, что силы трения, возникающие в области контакта тела и опорной плоскости, описываются классической моделью сухого кулоновского трения, а параметры задачи выбраны так, что тело может совершать безотрывное прямолинейное движение. Данная механическая система может служить простейшей моделью капсульного робота, движущегося по твердой поверхности посредством перемещения внутренних элементов.

    В работе исследуются режимы движения тела, при которых его скорость изменяется периодически с периодом, равным периоду движения внутренних масс. Показано, что если в результате перемещения внутренних масс тело может начать движение из состояния покоя, то при любых допустимых значениях параметров задачи существует периодический режим движения. При изменении значений параметров может существенно меняться и характер периодического движения. В частности, возможны как реверсионные, так и безреверсионные режимы движения. В безреверсионном режиме тело движется в одном и том же направлении, а интервалы движения чередуются с интервалами покоя (залипания тела). В реверсионном режиме тело на временном интервале, равном одному периоду, движется как в положительном, так и в отрицательном направлении. В этом случае тело за период движения совершает две остановки. После остановки тело либо сразу продолжает движение в противоположном направлении, либо попадает в зону залипания и покоится в течение конечного промежутка времени, а затем начинает движение в противоположном направлении. Было также установлено, что при определенных значениях параметров возможен периодический реверсионный режим, при котором тело движется без залипания. Была проведена подробная классификация всех возможных типов периодических режимов движения. Дано их полное качественное описание и в трехмерном пространстве параметров задачи построены области существования каждого из возможных типов движения.

  3. Яковлева Т.В.
    Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297

    В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.

  4. Худхур Х.М., Халил И.Х.
    Удаление шума из изображений с использованием предлагаемого алгоритма трехчленного сопряженного градиента
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 841-853

    Алгоритмы сопряженных градиентов представляют собой важный класс алгоритмов безусловной оптимизации с хорошей локальной и глобальной сходимостью и скромными требованиями к памяти. Они занимают промежуточное место между методом наискорейшего спуска и методом Ньютона, поскольку требуют вычисленияи хранения только первых производных и как правило быстрее методов наискорейшего спуска. В данном исследовании рассмотрен новый подход в задаче восстановления изображений. Он наследует одновременно методу сопряженных градиентов Флетчера – Ривза (FR) и трехкомпонентному методу сопряженных градиентов (TTCG), и поэтому назван авторами гибридным трехкомпонентным методом сопряженных градиентов (HYCGM). Новое направление спуска в нем учитывает текущее направления градиента, предыдущее направления спуска и градиент из предыдущей итерации. Показано, что новый алгоритм обладает свойствами глобальной сходимости и монотонности при использовании неточного линейного поиска типа Вулфа при некоторых стандартных предположениях. Для подтверждения эффективности предложенного алгоритма приводятся результаты численных экспериментов предложенного метода в сравнении с классическим методом Флетчера – Ривза (FR) и трехкомпонентным методом Флетчера – Ривза (TTFR).

  5. Божко А.Н.
    Структурные модели изделия в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091

    Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.

  6. Юркин А.В.
    Траектории лучей, биномиальные коэффициенты нового вида и двоичная система счисления
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 359-397

    Предложен новый алгоритм построения нелинейного арифметического треугольника на основе численного моделирования и двоичной системы счисления. Показано, что числа, заполняющие нелинейный арифметический треугольник, могут являться биномиальными коэффициентами нового вида. Проведена аналогия с биномиальными коэффициентами, вычисляемыми с помощью треугольника Паскаля. Дана геометрическая интерпретация биномов различных видов при рассмотрении ветвящихся систем лучей.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  7. Усенко В.А., Лобанов А.И.
    Метод потоковой релаксации для решения квазилинейных уравнений параболического типа
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 47-53

    Предложен численный метод решения квазилинейных уравнений параболического типа, основанный на аппроксимации потоков. Описана реализация метода на прямоугольной сетке. Приведены результаты численных расчетов. В отличие от применяемых методов для данного метода используется аппроксимация потоков на нерасширенном шаблоне. Для каждой итерации метода Ньютона возможно решение линейной задачи с помощью метода верхней релаксации (SOR). По сравнению с методами потоковой прогонки рассмотренный метод обладает большим потенциалом для использования на современных параллельных вычислительных комплексах.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  8. Шульц Д.С., Крайнов А.Ю.
    Математическое моделирование СВС процесса в гетерогенных реагирующих порошковых смесях
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 147-153

    В настоящей работе приводится математическая модель и результаты численного исследования распространения фронта горения СВС состава, когда скорость химического реагирования в каждой точке по длине образца СВС определяется из решения задачи диффузии и химического реагирования в реакционных ячейках. Получены зависимости скорости фронта горения от размера усредненного элемента гетерогенной структуры при различных значениях интенсивности диффузии. Данные зависимости качественно согласуются с экспериментальными зависимостями. В работе проведено исследование влияния энергии активации диффузии на скорость распространения фронта горения. Выявлено, что при увеличении энергии активации диффузии распространение фронта горения переходит в колебательный режим. Определена граница перехода от стационарного режима распространения фронта горения к колебательному режиму.

    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
  9. Ветчанин Е.В., Тененев В.А.
    Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381

    Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.

    Просмотров за год: 2. Цитирований: 16 (РИНЦ).
  10. Аксенов К.В., Алексеев В.П.
    Фильтрация цифровых сигналов в режиме непрерывного поступления данных
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 55-61

    Cтатья посвящена выбору метода цифровой фильтрации сигнала при поступлении данных в режиме реального времени и использованию алгоритма фильтрации на основе быстрого вейвлет-преобразования в рамках специальной задачи.

    Просмотров за год: 6. Цитирований: 7 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.