Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'графы':
Найдено статей: 47
  1. Чуканов С.Н.
    Сравнение сложных динамических систем на основе топологического анализа данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 513-525

    В работе рассматривается возможность сравнения и классификации динамических систем на основе топологического анализа данных. Определение мер взаимодействия между каналами динамических систем на основе методов HIIA (Hankel Interaction Index Array) и PM (Participation Matrix) позволяет построить графы HIIA и PM и их матрицы смежности. Для любой линейной динамической системы может быть построен аппроксимирующий ориентированный граф, вершины которого соответствуют компонентам вектора состояния динамической системы, а дуги — мерам взаимного влияния компонент вектора состояния. Построение меры расстояния (близости) между графами различных динамических систем имеет важное значение, например для идентификации штатного функционирования или отказов динамической системы или системы управления. Для сравнения и классификации динамических систем в работе предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам, с весами ребер, соответствующими мерам взаимодействия между каналами динамической системы. На основе методов HIIA и PM определяются матрицы мер взаимодействия между каналами динамических систем. В работе приведены примеры формирования взвешенных ориентированных графов для различных динамических систем и оценивания расстояния между этими системами на основе топологического анализа данных. Приведен пример формирования взвешенного ориентированного графа для динамической системы, соответствующей системе управления компонентами вектора угловой скорости летательного аппарата, который рассматривается как твердое тело с главными моментами инерции. Метод топологического анализа данных, используемый в настоящей работе для оценки расстояния между структурами динамических систем, основан на формировании персистентных баркодов и функций персистентного ландшафта. Методы сравнения динамических систем на основе топологического анализа данных могут быть использованы при классификации динамических систем и систем управления. Применение традиционной алгебраической топологии для анализа объектов не позволяет получить достаточное количество информации из-за уменьшения размерности данных (в связи потерей геометрической информации). Методы топологического анализа данных обеспечивают баланс между уменьшением размерности данных и характеристикой внутренней структуры объекта. В настоящей работе используются методы топологического анализа данных, основанные на применении фильтраций Vietoris-Rips и Dowker для присвоения каждому топологическому признаку геометрической размерности. Для отображения персистентных диаграмм метода топологического анализа данных в гильбертово пространство и последующей количественной оценки сравнения динамических систем используются функции персистентного ландшафта. На основе построения функций персистентного ландшафта предлагаются сравнение графов динамических систем и нахождение расстояний между динамическими системами. Для этой цели предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам. Приведены примеры нахождения расстояния между объектами (динамическими системами).

  2. Божко А.Н.
    Структурные модели изделия в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091

    Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.

  3. Коганов А.В., Сазонов А.Н.
    Критическая скорость роста вычислительных сетей для обеспечения неограниченной наработки на отказ
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 33-39

    Исследуется отказоустойчивость конечной вычислительной сети с произвольным графом, элементы которой имеют вероятность отказа и вероятность восстановления после отказа. Работа сети происходит по трехэтапным тактам (разрушение-восстановление-функционирование). Предлагается алгоритм наращивания сети в начале каждого такта ее работы. При этом граф увеличенной конфигурации сети формируется путем добавления новых экземпляров исходной сети и соединения их определенным образом с элементами старой конфигурации сети. Доказывается, что при достаточно быстром росте сеть имеет положительную вероятность неограниченной безотказной работы. Параметрическая оценка критической скорости роста сети имеет логарифмический порядок по числу тактов.

  4. Полежаев В.А.
    Задачи и методы автоматического построения графа цитирований по коллекции научных документов
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 707-719

    Задача автоматического построения графа цитирования по коллекции научных документов сводится к решению последовательности задач распознавания. Рассматриваются методы решения, их адаптация и объединение в технологическую цепочку, приводятся результаты вычислительных экспериментов для некоторых задач.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  5. Иванова А.С., Омельченко С.С., Котлярова Е.В., Матюхин В.В.
    Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978

    В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.

    Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.

  6. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Просмотров за год: 3.
  7. Стёпкин А.В., Стёпкина А.С.
    Алгоритм распознавания простых графов коллективом агентов
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 33-45

    Исследование, представленное в работе, посвящено проблеме распознавания конечных графов с помощью коллектива агентов. В работе рассматриваются конечные неориентированных графы без петель и кратных ребер. Коллектив агентов состоит из двух агентов-исследователей, которые имеют конечную память, независимую от числа вершин исследуемого ими графа, и используют по две краски каждый (в общей сложности используется три различные краски, так как цвет одной из красок у агентов совпадает), и одного агента-экспериментатора, который обладает конечной, неограниченно растущей внутренней памятью. Агенты-исследователи могут одновременно передвигаться по графу, считывать и изменять метки элементов графа, а также передавать необходимую информацию третьему агенту — агенту-экспериментатору. Агент-экспериментатор — это неподвижный агент, в памяти которого фиксируется результат функционирования агентов-исследователей на каждом шаге и, кроме того, постепенно выстраивается представление исследуемого графа (изначально неизвестного агентам) списком ребер и списком вершин.

    В работе подробно описаны режимы работы агентов-исследователей с указанием приоритетности их активации, рассмотрены команды, которыми обмениваются агенты-исследователи с агентом-экспериментатором во время выполнения тех или иных процедур. Также подробно рассмотрены проблемные ситуации, возникающие в работе агентов-исследователей, например окрашивание белой вершины при одновременном попадании двух агентов в одну и ту же вершину или пометка и распознавание ребер перешей- ков (ребра, соединяющие подграфы, распознаваемые различными агентами-исследователями) и так далее. Представлен полный алгоритм работы агента-экспериментатора с подробным описанием процедур обработки полученных от агентов-исследователей сообщений, на основании которых и происходит построение представления исследуемого агентами графа. Также в работе проведен полный анализ временной, емкостной и коммуникационной сложностей построенного алгоритма.

    Представленный алгоритм распознавания графов имеет квадратичную (от числа вершин исследуемого графа) временную сложность, квадратичную емкостную сложность и квадратичную коммуникационную сложность. Работа алгоритма распознавания основывается на методе обхода графа в глубину.

  8. Казорин В.И., Холодов Я.А.
    Фреймворк sumo-atclib для моделирования адаптивного управления трафиком дорожной сети
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 69-78

    В данной статье предлагается фреймворк sumo-atclib, который предоставляет удобный единообразный интерфейс для апробации разных по ограничениям алгоритмов адаптивного управления, например ограничения на длительности фаз, последовательности фаз, ограничения на минимальное время между управляющими воздействиями, который использует среду микроскопического моделирования транспорта с открытым исходным кодом SUMO. Фреймворк разделяет функционал контроллеров (класс TrafficController) и систему наблюдения и детектирования (класс StateObserver), что повторяет архитектуру реальных светофорных объектов и систем адаптивного управления и упрощает апробацию новыха лгоритмов, так как можно свободно варьировать сочетания разных контроллеров и систем детектирования транспортных средств. Также в отличие от большинства существующих решений добавлен класс дороги Road, который объединяет набор полос, это позволяет, например, определить смежность регулируемых перекрестков, в случаях когда на пути от одного перекрестка к другому количество полос меняется, а следовательно, граф дороги разбивается на несколько ребер. При это сами алгоритмы используют одинаковый интерфейс и абстрагированы от конкретных параметров детекторов, топологии сети, то есть предполагается, что это решение позволит транспортному инженеру протестировать уже готовые алгоритмы для нового сценария, без необходимости их адаптации под новые условия, что ускоряет процесс разработки управляющей системы и снижает накладные расходы на проектирование. В настоящий момент в пакете есть примеры алгоритмов MaxPressure и метода обучения с подкреплением Q-learning, база примеров также пополняется. Также фреймворк включает в себя набор сценариев SUMO для тестирования алгоритмов, в который входят как синтетические карты, так и хорошо верифицированные SUMO-сценарии, такие как Cologne и Ingolstadt. Кроме того, фреймворк предоставляет некоторый набор автоматически подсчитываемых метрик, таких как полное время в пути, время задержки, средняя скорость; также в фреймворке представлен готовый пример для визуализации метрик.

  9. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Просмотров за год: 28.
  10. Божко А.Н.
    Гиперграфовый подход в декомпозиции сложных технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022

    В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.