Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'граничные условия':
Найдено статей: 56
  1. Денисенко В.В., Долуденко А.Н., Фортова С.В., Колоколов И.В., Лебедев В.В.
    Численное моделирование течения Колмогорова в вязких средах под действием периодической в пространстве статической силы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 741-753

    Основной особенностью двумерного турбулентного течения, постоянно возбуждаемого внешней силой, является возникновение обратного каскада энергии. За счет нелинейных эффектов пространственный масштаб вихрей, создаваемых внешней силой, увеличивается до тех пор, пока рост не будет остановлен размером ячейки. В последнем случае энергия накапливается на этом масштабе. При определенных условиях такое накопление энергии приводит к возникновению системы когерентных вихрей. Наблюдаемые вихри имеют размер ячейки и в среднем изотропны. Численное моделирование является эффективным способом изучения таких процессов. Особый интерес представляет задача исследования турбулентности вязкой жидкости в квадратной ячейке при возбуждении коротковолновой и длинноволновой статическими внешними силами. Численное моделирование проводилось со слабосжимаемой жидкостью в двумерной квадратной ячейке с нулевыми граничными условиями. В работе показано, как на характеристики течения влияет пространственная частота внешней силы, а также величина вязкости самой жидкости. Увеличение пространственной частоты внешней силы приводит к стабилизации и ламинаризации течения. В то же время при увеличении пространственной частоты внешней силы уменьшение вязкости приводит к возобновлению механизма переноса энергии по обратному каскаду за счет смещения области диссипации энергии в область меньших масштабов по сравнению с масштабом накачки.

  2. Максимов Ф.А., Нигматуллин В.О.
    Метод гибридных сеток в задачах внешней и внутренней газовой динамики
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 543-565

    На основе метода моделирования задач газовой динамики с помощью системы сеток реализован алгоритм для решения нестационарной задачи с движущими телами. Алгоритм учитывает перемещение и вращение тел по заданному закону движения. Алгоритм применен для исследования обтекания бесконечной решетки, составленной из цилиндров с эллиптическим сечением, которые либо перемещаются поперек потока, либо вращаются с изменением угла атаки. Для моделирования обтекания тел с острой кромкой, характерных для профилей турбомашин, реализован алгоритм построения сетки типа С с включением некоторой области за профилем. Программа моделирования течения около профиля реализована в рамках моделей уравнений Эйлера, уравнений Навье – Стокса в приближении тонкого слоя с ламинарной вязкостью и турбулентной вязкостью в рамках алгебраической модели вязкости. Также программа была адаптирована для решения задач внутренней газодинамики турбомашин. Для этого была изменена методика задания граничных условий на входе и выходе из расчетной области со скорости на перепад давления, а также на боковых границах со свободного потока на периодичность. Это позволило моделировать течение газа в межлопаточных каналах компрессоров и турбин газотурбинных двигателей. Для отработки алгоритма были проведены серии расчетов аэродинамических параметров нескольких турбинных решеток на различных дозвуковых и сверхзвуковых режимах и их сравнение с экспериментом. Расчеты параметров турбинных решеток были проведены в рамках модели невязкого и вязкого газа. Сравнение расчета и эксперимента проводилось по распределению параметров газа около профиля, а также по потерям энергии потока в решетке. Расчеты показали применимость и корректность работы программы для решения данного класса задач. Для тестирования программы на задачах внешней дозвуковой аэродинамики были выполнены расчеты аэродинамических характеристик изолированного аэродинамического профиля в невозмущенном потоке. Полученные результаты позволяют утверждать о применимости метода гибридных сеток к различным классам задач прикладной газовой динамики.

  3. Бураго Н.Г., Никитин И.С.
    Алгоритмы сквозного счета для процессов разрушения
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666

    В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.

    Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.

    Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.

    Просмотров за год: 24.
  4. Гаспарян М.М., Самонов А.С., Сазыкина Т.А., Остапов Е.Л., Сакмаров А.В., Шайхатаров О.К.
    Решатель уравнения Больцмана на неструктурированных пространственных сетках
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447

    Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.

    Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.

    Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.

    В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.

    Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.

    Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.

    Просмотров за год: 13.
  5. Ветлужский А.Ю.
    Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733

    Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.

  6. Фадеев И.Д., Аксёнов А.А., Дмитриева И.В., Низамутдинов В.Р., Пахолков В.В., Рогожкин С.А., Сазонова М.Л., Шепелев С.Ф.
    Разработка методического подхода и численное моделирование теплогидравлических процессов в промежуточном теплообменнике реактора БН
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 877-894

    В работе представлены результаты трехмерного численного моделирования теплогидравлических процессов в промежуточном теплообменнике перспективного реактора на быстрых нейтронах с натриевым теплоносителем (БН) с учетом разработанного методического подхода.

    Промежуточный теплообменник (ПТО) размещен в корпусе реактора и предназначен для передачи тепла от натрия первого контура, циркулирующего в межтрубном пространстве, натрию второго контура, циркулирующему внутри труб. Перед входными окнами ПТО при интегральной компоновке оборудования первого контура в реакторе БН имеет место температурное расслоение теплоносителя из-за неполного перемешивания разнотемпературных потоков на выходе из активной зоны. Внутри ПТО в районе входных и выходных окон теплообменника также реализуется сложное продольно-поперечное течение теплоносителя, которое приводит к неравномерному распределению расхода теплоносителя в межтрубном пространстве и, как следствие, к неравномерному распределению температуры и эффективности теплообмена по высоте и радиусу трубного пучка.

    С целью подтверждения заложенных в проекте теплогидравлических параметров ПТО перспективного реактора БН был разработан методический подход для трехмерного численного моделирования теплообменника, размещенного в корпусе реактора, учитывающий трехмерную картину течения натрия на входе и внутри ПТО, а также обосновывающий рекомендации для упрощения геометрии расчетной модели ПТО. Численное моделирование теплогидравлических процессов в ПТО перспективного реактора БН проводилось с использованием программного комплекса FlowVision со стандартной $k-\varepsilon$-моделью турбулентности и моделью турбулентного теплопереноса LMS. Для повышения представительности численного моделирования трубного пучка ПТО выполнены верификационные расчеты однотрубного и многотрубного теплообменников «натрий – натрий» с соответствующими конструкции ПТО геометрическими характеристиками. Для определения входных граничных условий в модели ПТО выполнен дополнительный трехмерный расчет с учетом неравномерной картины течения в верхней смесительной камере реактора. Расчетная модель ПТО была оптимизирована за счет упрощения дистанционирующих поясов и выбора секторной модели. В результате численного моделирования ПТО получены распределения скорости натрия первого контура, температуры натрия первого и второго контуров. Удовлетворительное согласование результатов расчета с проектными данными по интегральным параметрам подтвердило принятые проектные теплогидравлические характеристики ПТО перспективного реактора БН.

  7. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

  8. Максимов Ф.А.
    Сверхзвуковое обтекание системы тел
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 969-980

    Работа посвящена аэродинамическим свойствам системы тел, обтекаемой сверхзвуковым потоком. Рассматривается вопрос об уменьшении взаимного влияния с увеличением размера, характеризующего разлет элементов системы. Для моделирования течения применен метод построения сетки из набора сеток. Одна из сеток, регулярная с прямоугольными ячейками, отвечает за интерференцию между телами и служит для описания внешнего невязкого течения. Другие сетки связаны с поверхностями обтекаемых тел и позволяют описать вязкие слои около обтекаемых тел. Эти сетки накладываются на первую, без совмещения каких-либо узлов. Граничные условия реализуются через интерполяцию функций на границах с одной сетки на другую.

    Просмотров за год: 1. Цитирований: 19 (РИНЦ).
  9. Губанов С.М., Дурновцев М.И., Картавых А.А., Крайнов А.Ю.
    Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529

    В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  10. Жлуктов С.В., Аксёнов А.А., Савицкий Д.В.
    Высокорейнольдсовые расчеты турбулентного теплопереноса в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 461-481

    В работе представлена модель тепловых пристеночных функций FlowVision (WFFV), позволяющая моделировать неизотермические течения жидкости и газа около твердых поверхностей на относительно грубых сетках с использованием различных моделей турбулентности. Настоящая работа продолжает исследование по разработке модели пристеночных функций, применимой в широком диапазоне значений величины y+. Модель WFFV предполагает гладкие профили касательной составляющей скорости, турбулентной вязкости, температуры и турбулентной теплопроводности около твердой поверхности. В работе исследуется возможность использования простой алгебраической модели для вычисления переменного турбулентного числа Прандтля, входящего в модель WFFV в качестве параметра. Результаты удовлетворительные. Обсуждаются особенности реализации модели WFFV в программном комплексе FlowVision. В частности, обсуждается граничное условие для уравнения энергии, используемое в высокорейнольдсовых расчетах неизотермических течений. Граничное условие выводится для уравнения энергии, записанного через термодинамическую энтальпию, и для уравнения энергии, записанного через полную энтальпию. Возможности модели демонстрируются на двух тестовых задачах: течение несжимаемой жидкости около пластины и сверхзвуковое течение газа около пластины (M = 3).

    Анализ литературы показывает, что в экспериментальных данных и, как следствие, в эмпирических корреляциях для числа Стэнтона (безразмерного теплового потока) присутствует существенная неопределенность. Результаты расчетов дают основание полагать, что значения параметров модели WFFV, автоматически задаваемые в программе по умолчанию, позволяют рассчитывать тепловые потоки на твердых протяженных поверхностях с инженерной погрешностью. В то же время очевидно, что невозможно изобрести универсальные пристеночные функции. По этой причине управляющие параметры модели WFFV выведены в интерфейс FlowVision. При необходимости пользователь может настраивать модель на нужный класс течений.

    Предлагаемая модель пристеночных функций совместима со всеми реализованными в программном комплексе FlowVision моделями турбулентности: Смагоринского, Спаларта–Аллмараса, SST $k-\omega$, $k-\varepsilon$ стандартной, $k-\varepsilon$ Abe Kondoh Nagano, $k-\varepsilon$ квадратичной и $k-\varepsilon$ FlowVision.

    Просмотров за год: 23.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.