Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'глобальные процессы':
Найдено статей: 25
  1. Куракин П.В.
    Technoscape: мультиагентная модель эволюции сети городов, объединенных торгово-производственными связями
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 163-178

    В работе предлагается многоагентная локально-нелокальная модель образования глобальной структуры городов с условным названием Technoscape. Technoscape можно в определенной степени считать также моделью возникновения глобальной экономики. Текущий вариант модели рассматривает очень простые способы поведения и взаимодействия агентов, при этом модель демонстрирует весьма интересные пространственно-временные паттерны.

    Под локальностью и нелокальностью понимаются пространственные характеристики способа взаимодействия агентов друг с другом и с географическим пространством, на котором разворачивается эволюция системы. Под агентом понимается условный ремесленник, семья или промышленно-торговая фирма, причем не делается разницы между производством и торговлей. Агенты размещены на ограниченном двумерном пространстве, разбитом на квадратные ячейки, и перемещаются по нему. Модель демонстрирует процессы высокой концентрации агентов в выделенных ячейках, что трактуется как образование Technoscape: мультиагентная модель эволюции «сетигородов». Происходит постоянный процесс как возникновения, так и исчезновения городов. Агенты живут Technoscape: мультиагентная модель эволюции «сетивечно», не мутируют и не эволюционируют, хотя это перспективное направление развития модели.

    Система Technoscape демонстрирует качественно новый вид самоорганизации. Частично эта самоорганизация напоминает поведение модели сегрегации по Томасу Шеллингу, однако эволюционные правила Technoscape существенно иные. В модели Шеллинга существуют лавины, но без добавления новых агентов в системе существуют простые равновесия, в то время как в Technoscape не существует даже строгих равновесий, в лучшем случае квазиравновесные, медленно изменяющиеся состояния.

    Нетривиальный результат в модели Technoscape, также контрастирующий с моделью сегрегации Шеллинга, состоит в том, что агенты проявляют склонность к концентрации в больших городах даже при полном игнорировании локальных связей.

    При этом, хотя агенты и стремятся в большие города, размер города не является гарантией стабильности. По ходу эволюции системы происходит постоянное Technoscape: мультиагентная модель эволюции «сетипереманивание» жителей в другие города такого же класса.

  2. Малков С.Ю., Коротаев А.В., Давыдова О.И.
    Мировая динамика как объект моделирования (к пятидесятилетию первого доклада Римскому клубу)
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1371-1394

    В последней четверти ХХ века характер глобального демографического и экономического развития стал быстро изменяться: непрерывно ускорявшийся рост основных характеристик, имевший место на протяжении предыдущих двухсот лет, сменился на резкое их торможение. В условиях этих изменений возрастает роль долгосрочного прогноза мировой динамики. При этом прогноз должен основываться не на инерционном проецировании прошлых тенденций в будущие периоды, а на математическом моделировании фундаментальных закономерностей исторического развития. В статье изложены предварительные результаты исследований по математическому моделированию и прогнозированию мировой демографо-экономической динамики, основанные на таком подходе. Предложены базовые динамические уравнения, отражающие эту динамику, обоснована модификация этих уравнений применительно к разным историческим эпохам. Для каждой исторической эпохи на основе анализа соответствующей ей системы уравнений определялся фазовый портрет и проводился анализ его особенностей. На основе этого анализа делались выводы о закономерностях мирового развития в рассматриваемый период.

    Показано, что для моделирования исторической динамики важным является математическое описание развития технологий. Предложен способ описания технологической динамики, на основе которого предложены соответствующие математические уравнения.

    Рассмотрены три стадии исторического развития: стадия аграрного общества (до начала XIX века), стадия индустриального общества (XIX–ХХ века) и современная эпоха. Предложенная математическая модель показывает, что для аграрного общества характерна циклическая демографо-экономическая динамика, в то время как для индустриального общества характерен рост демографических и экономических характеристик, близкий к гиперболическому.

    Результаты математического моделирования показали, что человечество в настоящее время переходит на принципиально новую фазу исторического развития. Происходит торможение роста и переход человеческого общества в новое фазовое состояние, облик которого еще не определен. Рассмотрены различные варианты дальнейшего развития.

  3. Замолодчиков Д.Г.
    Прогноз роста глобальной температуры в XXI веке на основе простой статистической модели
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 379-390

    Предложена простая статистическая модель динамики среднегодовой глобальной температуры, комбинирующая логарифмический эффект роста концентрации диоксида углерода и вклад климатических циклов. Параметры модели определены по известным данным инструментальных измерений за 1850–2010 гг. Модель подтверждает достоверное наличие в динамике двух циклических процессов периодичности в 10.5 и 68.8 лет. С использованием сценариев изменения концентрации двуоксида углерода, предложенных в 5-ом оценочном докладе МГЭИК, построен прогноз изменения среднегодовой глобальной температуры в XXI веке. Оказалось, что траектории роста глобальной температуры из доклада МГЭИК на 0.9–1.8 °C выше полученных в модели.

    Просмотров за год: 1.
  4. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

  5. Богданов А.В., Дегтярева Я.А., Захарчук Е.А., Тихонова Н.А., Фукс В.Р., Храмушин В.Н.
    Интерактивный графический инструментарий глобального вычислительного эксперимента в службе морских оперативных прогнозов
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 641-648

    Эффективность и полнота численного моделирования в океанологии и гидрометеорологии всецело обусловливаются алгоритмическими особенностями построения интерактивного вычислительного эксперимента в масштабах Мирового океана с адаптивным покрытием закрытых морей и прибрежных акваторий уточненными математическими моделями, с возможностью программного распараллеливания уточняющих расчетов вблизи конкретных — защищаемых участков морского побережья. Важной составляющей исследований представляются методы непрерывной графической визуализации в ходе вычислений, в том числе осуществляемой в параллельных процессах с общей оперативной памятью или по контрольным точкам на внешних носителях. Результаты вычислительных экспериментов используются в описании гидродинамических процессов вблизи побережья, учет которых важен в организации морских служб контроля и прогноза опасных морских явлений.

    Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.