Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'вырожденная задача':
Найдено статей: 5
  1. Чуйко С.М.
    Краевые задачи типа interface conditions для дифференциально-алгебраических систем
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 465-477

    Найдены достаточные условия разрешимости, а также конструкция обобщенного оператора Грина линейной нетеровой краевой задачи для вырожденной линейной дифференциально-алгебраической системы с импульсным воздействием типа interface conditions.

    Просмотров за год: 5.
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  4. Рябцев А.Б.
    Накопление ошибки в методе сопряженных градиентов для вырожденных задач
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 459-472

    В данной работе рассматривается метод сопряженных градиентов при решении задачи минимизации квадратичной функции с аддитивным шумом в градиенте. Были рассмотрены три концепции шума: враждебный шум в линейном члене, стохастический шум в линейном члене и шум в квадратичном члене, а также комбинации первого и второго с последним. Экспериментально получено, что накопление ошибки отсутствует для любой из рассмотренных концепций, что отличается от фольклорного мнения, что, как и в ускоренных методах, накопление ошибки должно иметь место. В работе приведена мотивировка того, почему ошибка может и не накапливаться. Также экспериментально исследовалась зависимость ошибки решения как от величины (масштаба) шума, так и от размера решения при использовании метода сопряженных градиентов. Предложены и проверены гипотезы о зависимости ошибки в решении от масштаба шума и размера (2-нормы) решения для всех рассмотренных концепций. Оказалось, что ошибка в решении (по функции) линейно зависит от масштаба шума. В работе приведены графики, иллюстрирующие каждое отдельное исследование, а также детальное описание численных экспериментов, включающее в себя изложение способов зашумления как вектора, так и матрицы.

  5. Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.