Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'визуализация':
Найдено статей: 31
  1. Русанова Я.М., Чердынцева М.И.
    Визуализация 3D-сцен. Способы контроля и хранения ресурсов
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 119-127

    Основные задачи, представленные в этой статье, - это описание и хранение всей информации, необходимой для визуального представления объектов. Разрабатываемая технология хранения и контроля ресурсов может применяться для визуализации трехмерных сцен в режиме реального времени. Были использованы средства Sample Framework, предоставляемые DirectX SDK, и библиотека Direct3D Extension Library (D3DX).

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 1 с.
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  4. Москалев П.В., Буховец А.Г.
    О размерности подобия рандомизированной системы итеративных функций
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 681-691

    В работе рассматриваются свойства рандомизированной системы итеративных функций (РСИФ), полученной в результате обобщения известного алгоритма «игра в хаос». Для моделирования РСИФ была использована свободная система статистического анализа и визуализации данных R. Показано, что для полигональных протофрактальных множеств Z = {zj}, j = 1, 2, . . . , k зависимость размерности подобия от параметров РСИФ dS(μ|k) носит немонотонный характер с экстремальным значением max dS(μ|k)=− ln k/ln(1/(1+μ)).

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  5. Аксёнов А.А.
    FlowVision: индустриальная вычислительная гидродинамика
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 5-20

    В работе представлена новая версия программного комплекса FlowVision, предназначенного для автоматизации инженерных расчетов в области вычислительной гидродинамики: FlowVision 3.09.05. Программный комплекс (ПК) FlowVision используется для решения различных прикладных задач в различных областях промышленности. Его популярность основана на том, что он позволяет решать сложные нетрадиционные задачи, находящиеся на стыке различных дисциплин, с одной стороны, и, с другой стороны, на парадигме полной автоматизации таких трудоемких для инженера процессов, как построение расчетной сетки. FlowVision — это программный комплекс, полностью отчуждаемый от разработчиков. Он имеет развитый графический интерфейс, систему задания расчетного проекта и систему визуализации течений различными методами — от построения контуров (для скалярных переменных) и векторов (для векторных переменных) на плоскостях и поверхностях до объемной визуализации расчетных данных. Кроме этого, ПК FlowVision предоставляет пользователю возможность вычислять интегральные характеристики на поверхностях и в ограниченных объемах.

    ПК основан на конечно-объемном подходе к аппроксимации основных уравнений движения жидкости. В нем реализованы явный и неявный методы решения этих уравнений. ПК имеет автоматический построитель неструктурированной сетки с возможностью ее локальной динамической адаптации. В ПК реализован двухуровневый параллелизм, позволяющий эффективно проводить расчеты на компьютерах, имеющих распределенную и общую память одновременно. FlowVision обладает широким спектром физико-математических моделей: турбулентности (URANS, LES, ILES), горения, массопереноса с учетом химических превращений и радиоактивного распада, электрогидродинамики.

    FlowVision позволяет решать задачи движения жидкостей со скоростями, соответствующими несжимаемому или гиперзвуковому режимам за счет использования все-скоростного метода расщепления по физическим переменным для решения уравнений Навье–Стокса. FlowVision позволяет решать междисциплинарные задачи с использованием различных средств моделирования, например: моделировать многофазные течения методом VOF, обтекание подвижных тел с помощью эйлерова подхода при неподвижной расчетной сетке, моделировать вращающиеся машины с использованием метода скользящей сетки, решать задачи взаимодействия жидкости и конструкций методом двухстороннего сопряжения FlowVision с конечно-элементными кодами. В данной работе показаны примеры решения задач-вызовов: a) посадка космического корабля на воду при торможении ракетными двигателями, где есть граница раздела «воздух–вода», подвижные тела и взаимодействие сверхзвуковой струи газа с границей раздела «вода–воздух»; б) моделирование работы человеческого сердца с искусственными и живыми клапанами, спроектированными на базе томографических исследований, с использованием двухстороннего сопряжения «жидкостной» расчетной области с конечно-элементной моделью мышц сердца.

    Просмотров за год: 30. Цитирований: 8 (РИНЦ).
  6. В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.

    Просмотров за год: 2.
  7. В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  8. Чуканов С.Н.
    Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719

    В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.

  9. В работе дается обзор существующих методов обработки сигналов в условиях применения статистической модели Райса. Рассмотрены основные направления развития, существующие ограничения и возможности совершенствования методов решения задачи шумоподавления и фильтрации анализируемых сигналов на примере магнитно-резонансной визуализации. Развита концепция нового подхода к решению задачи одновременного определения основных статистических параметров райсовского случайного сигнала на основе метода моментов в двух вариантах его осуществления. Проведено компьютерное моделирование и проведен сравнительный анализ полученных численных результатов.

    Цитирований: 10 (РИНЦ).
  10. Мелешко Е.В., Афанасенко Т.С., Гаджимирзаев Ш.М., Пашков Р.А., Гиля-Зетинов А.А., Цыбулько Е.А., Зайцева А.С., Хельвас А.В.
    Дискретное моделирование процесса восстановительного ремонта участка дороги
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1255-1268

    Работа содержит описание результатов моделирования процесса поддержания готовности участка дорожной сети в условиях воздействия с заданными параметрами. Рассматривается одномерный участок дороги длиной до 40 км с общим количеством ударов до 100 в течение рабочей смены бригады.

    Разработана имитационная модель проведения работ по его поддержанию в рабочем состоянии несколькими группами (инженерными бригадами), входящими в состав инженерно-дорожного подразделения. Для поиска точек появления заграждений используется беспилотный летательный аппарат мультикоптерного типа.

    Разработаны схемы жизненных циклов основных участников тактической сцены и построена событийно управляемая модель тактической сцены. Предложен формат журнала событий, формируемого в результате имитационного моделирования процесса поддержания участка дороги.

    Для визуализации процесса поддержания готовности участка дороги предложено использовать визуализацию в формате циклограммы. Разработан стиль для построения циклограммы на основе журнала событий.

    В качестве алгоритма принятия решения по назначению заграждений бригадам принят простейший алгоритм, предписывающий выбирать ближайшее заграждение.

    Предложен критерий, описывающий эффективность работ по поддержанию участка на основе оценки средней скорости движения транспортов по участку дороги.

    Построены графики зависимости значения критерия и среднеквадратичной ошибки в зависимости от длины поддерживаемого участка и получена оценка для максимальной протяженности дорожного участка, поддерживаемого в состоянии готовности с заданными значениями для выбранного показателя качества при заданных характеристика нанесения ударов и производительности ремонтных бригад. Показана целесообразность проведения работ по поддержанию готовности несколькими бригадами, входящими в состав инженерно-дорожного подразделения, действующими автономно.

    Проанализировано влияние скорости беспилотного летательного аппарата на возможности по поддержанию готовности участка. Рассмотрен диапазон скоростей от 10 до 70 км/ч, что соответствует техническим возможностям разведывательных беспилотных летательных аппаратов мультикоптерного типа.

    Результаты моделирования могут быть использованы в составе комплексной имитационной модели армейской наступательной или оборонительной операции и при решении задачи оптимизации назначения задач по поддержанию готовности участков дорог инженерно-дорожными бригадами. Предложенный подход может представлять интерес при разработке игр-стратегий военной направленности.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.