Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное моделирование обледенения в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 83-96Процедура сертификации самолетов транспортной категории для полетов в условиях обледенения требует проведения расчетов форм и размеров ледяных наростов, образующихся на поверхностях самолетов в различные моменты времени. В настоящее время отсутствует программный продукт российской разработки, предназначенный для численного моделирования обледенения, признанный российскими сертификационными органами. В данной работе описывается методика расчета обледенения самолетов IceVision, созданная на базе программного комплекса FlowVision.
Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume Of Fluid (VOF — объем жидкости в ячейке) для отслеживания нарастания льда. В этой методике решается нестационарная задача непрерывного нарастания льда в эйлеровой постановке. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В других (известных из литературы) подходах изменение формы льда учитывается путем модификации аэродинамической поверхности с использованием лагранжевой сетки, а для учета теплоотдачи в лед используется некоторая эмпирическая модель.
Реализованная во FlowVision математическая модель предполагает возможность моделирования сухого и влажного режимов обледенения. Модель автоматически определяет зоны сухого и влажного льда. В сухой зоне температура контактной поверхности определяется с учетом сублимации льда и теплопереноса во льду. Во влажной зоне учитывается течение водяной пленки по поверхности льда. Пленка замерзает за счет испарения, теплоотдачи в лед и в воздух. Методика IceVision учитывает отрыв пленки. Для моделирования двухфазного течения воздуха и капель используется многоскоростная модель взаимопроникающих континуумов в рамках эйлерова подхода. Методика IceVision учитывает распределение капель по размерам. Численный алгоритм учитывает существенное различие временных масштабов физических процессов, сопровождающих обледенение самолета: двухфазного внешнего течения (воздуха и капель), течения водяной пленки, роста льда. В работе приводятся результаты решения тестовых задач, демонстрирующие эффективность методики IceVision и достоверность результатов FlowVision.
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект. -
Анализ адекватности модели строгого согласования реплик в базах данных NoSQL
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 101-112В статье анализируется модель сильного согласования реплик в базах данных NoSQL. Описывается процесс подготовки и проведения натурного эксперимента в облаке для доказательства адекватности модели. Приводятся спецификации программ, с помощью которых производился доступ к NoSQL-системе? и программы обработки журналов. Часть из полученных экспериментальным путем данных использовалась для адаптации модели, другая часть — для оценки адекватности. Приводится анализ адекватности модели.
Ключевые слова: база данных NoSQL, сильная согласованность, адекватность, адаптация, время ожидания, преобразование Лапласа–Стилтьеса.Просмотров за год: 2. -
Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.
Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.
-
Система хранения профилей физических свойств ДНК на примере промоторов Escherichia coli
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 443-450Просмотров за год: 3.В данной работе нами представлена база данных, спроектированная для хранения профилей физических свойств вдоль двойной спирали ДНК, и продемонстрировано ее использование для хранения, поиска и анализа промоторных последовательностей E. coli. Отличительным свойством предложенной базы данных является то, что весь профиль хранится как единый объект, который с точки зрения СУБД полностью подобен строке или числу. Такие объекты СУБД может сравнивать друг с другом и осуществлять быструю выборку на основании индексов. В базу данных загружена информация о 1227 известных промоторах. Для каждого промотора сохранена нуклеотидная последовательность, а также вычислен и загружен в базу профиль электростатического потенциала промоторной ДНК. Кроме того, каждый промотор связан с генами, транскипцию которых он регулирует, а также с записями о сайтах посадки транскрипционных факторов, влияющих на функционирование промотора. Организован доступ к базе данных через интернет; исходные коды доступны для скачивания, а содержимое базы данных может быть выслано авторами по запросу.
-
Распространение языков в КНР на уровне провинций: оценивание при неполных данных
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 707-716Данная работа посвящена решению практической задачи восстановления данных по распространению языков на региональном уровне на примере Китайской Народной Республики. Необходимость получения таких данных связана с задачей вычисления индексов лингвистического разнообразия, которые, в свою очередь, активно используются при эмпирическом анализе и прогнозе факторов социально-экономического развития, а также могут служить индикаторами потенциальных конфликтов на рассматриваемых территориях. В качестве исходной информации мы используем сведения из базы данных «Этнолог» (Ethnologue), дополняя их общедоступными данными переписей населения. Рассматриваемые нами данные содержат по каждому языку (а) оценку количества жителей страны, считающих этот язык родным, и (б) индикаторы наличия таких жителей в каждой из провинций КНР. Наша задача — для всех пар «язык–провинция» оценить количество жителей провинции, считающих этот язык родным. Она сводится к решению недоопределенной системы алгебраических уравнений. Специфика данных Ethnologue заключается в том, что, в силу большой трудоемкости и стоимости сбора таких данных, а также неполноты сведений по соответствующему разделу в переписях населения, имеющаяся информация по отдельным языкам в различных провинциях представлена за различные периоды времени. Одновременное использование таких данных приводит к тому, что возникающая система уравнений имеет неточно определенную правую часть, поэтому мы строим приближенное решение, характеризуемое минимальной невязкой. Учитывая неоднородность исходных данных (некоторые из языков оказываются на порядки менее распространенными), мы переходим к использованию взвешенной невязки, определяя в каждом уравнении весовые коэффициенты как величины, обратно пропорциональные правой части. Такой способ формирования невязки позволяет восстановить искомые переменные. Более 92% переменных оказываются устойчивыми к изменениям правой части при вероятностном моделировании ошибок записей в исходных данных.
Ключевые слова: использование языков в регионах, индексы неоднородности, восстановление неполных данных.Просмотров за год: 3. -
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492Просмотров за год: 12.В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
-
Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.
-
Конформационно-динамические свойства ДНК и подходы к физическому картированию генома
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 419-428Просмотров за год: 2. Цитирований: 2 (РИНЦ).Ранее нами был предложен и развит метод исследования ДНК, основанный на расщеплении двунитевых фрагментов ДНК под действием ультразвука. Были получены относительные частоты расщепления фосфодиэфирной связи во всех 16 динуклеотидах. Увеличение базы проанализированных данных до 20 тысяч нуклеотидов позволил получить относительные частоты расщепления для 256 тетрануклеотидов. Эти величины количественно характеризуют влияние последовательности нуклеотидов на конформационную динамику сахарофосфатного остова. Сейчас известны определённые типы гетерогенности сахарофосфатного остова ДНК, связанные с расщеплением ДНК различными химическими агентами или ДНКазой 1. Гетерогенность свойств молекулы ДНК может быть использована для физического картирования генома, то есть определения участков, отвечающих за регуляцию генетический экспрессии.
-
Эмпирическая проверка теории институциональных матриц методами интеллектуального анализа данных
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 923-939Цель настоящего исследования состояла в установлении достоверной взаимосвязи показателей внешней среды и уровня освоенности территорий с характером доминирующих в странах институциональных матриц. Среди индикаторов внешних условий представлены как исходные статистические показатели, напрямую полученные из баз данных открытого доступа, так и сложные интегральные показатели, сформированные путем применения метода главных компонент. Оценка точности распознавания стран с доминированием X- или Y-институциональных матриц по перечисленным показателям проводилась с помощью ряда методов, основанных на машинном обучении. Была выявлена высокая информативность таких показателей, как освоенность территории, амплитуда осадков, летние и зимние температуры, уровень рисков.
Ключевые слова: теория институциональных матриц, машинное обучение.Просмотров за год: 7. Цитирований: 13 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"