Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обзор современных технологий извлечения знаний из текстовых сообщений
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.
-
Неэкстенсивная статистика Тсаллиса системы контрактоворганизаций оборонно-промышленного комплекса
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1163-1183В работе проведен анализ системы контрактов, заключаемых организациями оборонно-промышленного комплекса России в процессе выполнения государственного оборонного заказа. Сделан вывод, что для описания данной системы может быть использована методология статистической механики. По аналогии с подходом, применяемым при рассмотрении большого канонического ансамбля Гиббса, изучаемый ансамбль сформирован в виде набора мгновенных «картинок», образованных из действующих в каждый момент времени неразличимых контрактов со своими стоимостями. Показано, что ограничения, накладываемые государством на процесс ценообразования, являются причиной того, что совокупность контрактов может быть отнесена к категории так называемых сложных систем, для описания которых используется неэкстенсивная статистика Тсаллиса. Это приводит к тому, что стоимостные распределения контрактов должны соответствовать деформированному распределению Бозе–Эйнштейна, полученному с использованием энтропии Тсаллиса. Данный вывод справедлив как для всей совокупности контрактов, заключаемых участниками выполнения государственного оборонного заказа, так и контрактов, заключаемых отдельной организацией в качестве исполнителя.
Для анализа степени соответствия эмпирических стоимостных распределений модифицированному распределению Бозе–Эйнштейна в настоящей работе использован метод сравнения соответствующих функций распределения вероятностей. В работе делается вывод о том, что для изучения стоимостных распределений контрактов отдельной организации в качестве анализируемых данных можно использовать сформировавшиеся за календарный год распределения выручки по отдельным заказам, соответствующим заключенным контрактам. Получены эмпирические функции распределения вероятностей ранжированных значений выручки от реализации по отдельным заказам АО «Концерн «ЦНИИ «Электроприбор», одной из ведущих приборостроительных организаций ОПК России, с 2007 по 2021 год. Наблюдается хорошее согласие между эмпирическими и теоретическими функциями распределений вероятностей, рассчитанными с использованием деформированных распределений Бозе–Эйнштейна в пределе «разряженного газа контрактов». Полученные на основе эмпирических данных значения параметров энтропийного индекса для каждого из изученных распределений выручки свидетельствуют о достаточно высокой степени неаддитивности, присущей изучаемой системе. Показано, что для оценки характеристических стоимостей распределений можно использовать величину среднего значения годовой выручки, рассчитанного с помощью нормированного эскортного распределения. Факт наилучшего согласия эмпирических и теоретических функций распределения вероятностей при нулевых значениях химического потенциала позволяет сделать предположение, что изучаемый «газ контрактов» можно сравнить с газом фотонов, в котором число частиц не является постоянным.
-
Разработка и исследование алгоритма выделения признаков в публикациях Twitter для задачи классификации с известной разметкой
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 171-183Посты социальных сетей играют важную роль в отражении ситуации на финансовом рынке, а их анализ является мощным инструментом ведения торговли. В статье описан результат исследования влияния деятельности социальных медиа на движение финансового рынка. Сначала отбирается топ инфлюенсеров, активность которых считается авторитетной в криптовалютном сообществе. Сообщения в Twitter используются в качестве данных. Подобные тексты обычно сильно зашумлены, так как включают сленг и сокращения, поэтому представлены методы подготовки первичных текстовых данных, включающих в себя обработку Stanza, регулярными выражениями. Рассмотрено два подхода представления момента времени в формате текстовых данных. Так исследуется влияние либо одного твита, либо целого пакета, состоящего из твитов, собранных за определенный период времени. Также рассмотрен статистический подход в виде частотного анализа, введены метрики, способные отразить значимость того или иного слова при выявлении зависимости между изменением цены и постами в Twitter. Частотный анализ подразумевает исследование распределений встречаемости различных слов и биграмм в тексте для положительного, отрицательного либо общего трендов. Для построения разметки изменения на рынке перерабатываются в бинарный вектор с помощью различных параметров, задавая таким образом задачу бинарной классификации. Параметры для свечей Binance подбираются для лучшего описания движения рынка криптовалюты, их вариативность также исследуется в данной статье. Оценка эмоционального окраса текстовых данных изучается с помощью Stanford Core NLP. Результат статистического анализа представляет непосредственно практический интерес, так как предполагает выбор признаков для дальнейшей бинарной или мультиклассовой задач классификации. Представленные методы анализа текста способствуют повышению точности моделей, решающих задачи обработки естественного языка, с помощью отбора слов, улучшения качества векторизации. Такие алгоритмы зачастую используются в автоматизированных торговых стратегиях для предсказания цены актива, тренда ее движения.
-
Частотные, временные и пространственные изменения электроэнцефалограммы после COVID-19 при выполнении простого речевого задания
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 691-701Используя анализ данных и применение нейронных сетей в нашей работе, мы выявили закономерности электрической активности мозга, характеризующие COVID-19. Нас интересовали частотные, временные и пространственные паттерны электрической активности у людей, перенесших COVID-19. Мы обнаружили преобладание паттернов $\alpha$-ритма в левом полушарии у здоровых людей по сравнению с людьми, переболевшими COVID-19. Более того, мы наблюдаем значительное снижение вклада левого полушария в области речевого центра у людей, перенесших COVID-19, при выполнении речевых заданий. Наши результаты показывают, что сигнал у здоровых людей более пространственно локализован и синхронизирован между полушариями при выполнении задач по сравнению с людьми, перенесшими COVID-19. Мы также наблюдали снижение низких частот в обоих полушариях после COVID-19. Электроэнцефалографические (ЭЭГ) паттерны COVID-19 обнаруживаются в необычной частотной области. То, что обычно считается шумом в ЭЭГ-данных, несет в себе информацию, по которой можно определить, переболел ли человек COVID-19. Эти паттерны можно интерпретировать как признаки десинхронизации полушарий, преждевременного старения мозга и стресса при выполнении простых задач по сравнению с людьми без COVID-19 в анамнезе. В нашей работе мы показали применимость нейронных сетей для выявления долгосрочных последствий COVID-19 на данные ЭЭГ. Кроме того, наши данные подтвердили гипотезу о тяжести последствий COVID-19, обнаруженных по ЭЭГ-данным. Представленные результаты функциональной активности мозга позволяют использовать методы машинного обучения на простых неинвазивных интерфейсах «мозг–компьютер» для выявления пост-COVID-синдрома и прогресса в нейрореабилитации.
Ключевые слова: COVID-19, интерфейс «мозг–компьютер», ЭЭГ, частотные паттерны, строение мозга, нейрореабилитация, постковидный синдром, глубокое обучение. -
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 2. Детерминационный анализ
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 271-292Просмотров за год: 2. Цитирований: 3 (РИНЦ).На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторым физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы методы описания связи между качественными классами характеристик, основанные на прогнозе качественных значений одной характеристики по качественным значениям другой. Найдены границы качественных классов исследуемых характеристик.
-
Модель газообмена СО2 сфагнового верхового болота
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 369-377На основе анализа данных измерений потоков СО2 на двух примыкающих участках неосушенного сфагнового верхового болота (сосняке кустарничково-сфагновом и кустарничково-сфагновом болоте с редкой сосной) в Московской области построена модель, описывающая зависимость газообмена СО2 верхового болота от приходящей суммарной солнечной радиации, влажности почвы и температуры воздуха. Исследования проводились во второй половине вегетационного периода при уровне болотных вод ниже 30 см. На основе данных измерений выявлена ведущая роль влажности почвы как фактора, определяющего интенсивность фотосинтеза и дыхания сфагнума и почвы. Построенная модель позволяет объяснить от 71 % до 74 % изменчивости газообмена СО2 исследуемого болота.
Ключевые слова: Sphagnum, верховое болото, фотосинтез, дыхание, модель газообмена СО2, уровень грунтовых вод.Просмотров за год: 1. Цитирований: 3 (РИНЦ). -
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
-
Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.
Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.
-
Моделирование межрегиональных миграционных потоков клеточными автоматами
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1467-1483В статье исследуется проблема разработки и обоснования наиболее адекватного инструментария для прогнозирования величины и структуры межрегиональных миграционных потоков. Миграционные процессы оказывают значительное влияние на численность и демографическую структуру населения территорий, состояние и сбалансированность региональных и локальных рынков труда. Для анализа миграционных процессов и оценки их последствий необходим экономикоатематический инструментарий, позволяющий с необходимой точностью моделировать миграционные процессы и потоки для различных территорий. Рассмотрены существующие подходы и методы моделирования миграционных процессов с анализом их преимуществ и недостатков. Отмечается, что для реализации многих из этих методов необходим большой массив агрегированных статистических данных, который не всегда имеется в наличии и не характеризует поведение мигрантов на локальном уровне, на котором принимается решение о переезде на новое место жительства. Это существенно влияет на возможность применения соответствующих методов моделирования миграционных процессов и точность прогнозов величины и структуры миграционных потоков.
В работе разработана и апробирована на данных Приморского края модель клеточного автомата для моделирования межрегиональных миграционных потоков, реализующая интеграцию модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности в общую модель миграционного потока территории. Для реализации модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности предложен интегральный индекс привлекательности регионов с экономической, социальной и экологической составляющими. Для оценки прогностической способности разработанной модели проведено ее сравнение с существующими моделями клеточных автоматов, используемыми для прогнозирования межрегиональных миграционных потоков. Для этих целей был использован метод вневыборочного прогнозирования, который показал статистически значимое превосходство предложенной модели, которая позволяет получать прогнозы и количественные характеристики миграционных потоков территорий на основе реального миграционного поведения домашних хозяйств на локальном уровне с учетом условий их проживания и поведенческих мотивов.
Ключевые слова: миграционные потоки, модели, сравнительный анализ, клеточные автоматы, ограниченная рациональность, точность прогноза. -
Метод контрастного семплирования для предсказания библиографических ссылок
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.
Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.
Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"