Вычисление частных решений неоднородных линейных уравнений с двумя линейными операторами, из которых по крайней мере один почти алгебраический, в случае простых корней характеристического уравнения

 pdf (126K)

Понятие оператора, почти алгебраического относительно некоторого двустороннего идеала, алгебры линейных операторов, действующих в некоторых конечномерных линейных пространствах, распространяется на тот случай, когда идеал только левый. Доказывается теорема о виде частного решения уравнения вида $\sum\limits^{n, m}_{i=0, j=0} a_{ij} A^i B^j u = f$, где $A$ и $B$ — линейные операторы, $f$ — элемент некоторого линейного пространства. Результаты применяются к дифференциально- разностным уравнениям.

Ключевые слова: почти алгебраические дифференциальные операторы, почти алгебраические разностные операторы, левые регуляризаторы линейных операторов, дифференциально-разностные операторы, частные решения неоднородных линейных дифференциально-разностных уравнений
Цитата: Цирулик В.Г. Вычисление частных решений неоднородных линейных уравнений с двумя линейными операторами, из которых по крайней мере один почти алгебраический, в случае простых корней характеристического уравнения // Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 9-18
Citation in English: Tsirulik V.G. Calculation of particular solutions of nonhomogeneous linear equations with two linear operators, of which at least one is almost algebraic, in the case of simple roots of the characteristic equation // Computer Research and Modeling, 2016, vol. 8, no. 1, pp. 9-18

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00, 03.01.00, 03.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science