Ки&М

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

УДК: 519.8

Математическое моделирование изгиба круговой пластинки с применением *S*-сплайнов

А.Н. Федосова^{1,а}, Д.А. Силаев ^{2,b}

¹Московский государственный строительный университет, 129337, г. Москва, Ярославское ш., 26 ²Московский государственный университет им. М. В. Ломоносова, 119991, ГСП-1, г. Москва, ул. Ленинские горы, МГУ, Главное здание

E-mail: ^a hanim@inbox.ru, ^b dasilaev@mail.ru

Получено 11 июня 2011 г., после доработки 25 июля 2015 г.

Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или S-сплайнов высоких степеней, к решению задач теории упругости. S-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса \mathbb{C}^4 при решении бигармонического уравнения на круге.

Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости

Mathematical modeling of bending of a circular plate using S-splines

A. N. Fedosova¹, D. A. Silaev²

¹Moscow State University of Civil Engineering, 26 Yaroslavskoe sh., Moscow, 129337, Russia ²Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, 1 Leninskiye Gory, Moscow, 119991, Russia

Abstract. — This article is dedicated to the use of higher degree *S*-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. *S*-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class C^4 7th degree *S*-splines.

Keywords: approximation, spline, numerical methods, method of finite elements, the mathematical physics, the elasticity theory

Citation: Computer Research and Modeling, 2015, vol. 7, no. 5, pp. 977–988 (Russian).

© 2015 Анастасия Николаевна Федосова, Дмитрий Алексеевич Силаев

Введение

В данной работе речь пойдет о S-сплайнах седьмой степени класса C⁴, которые сохраняют непрерывными четыре производные и при этом остаются устойчивыми. Рассматриваемая задача сводится к решению неоднородного бигармонического уравнения методом Галёркина, где в качестве системы базисных функций выбраны фундаментальные S-сплайны класса \mathbb{C}^4 . Такой подход не только обеспечивает более высокую точность получаемого численного решения при сравнительно небольшом количестве базисных функций, но и позволяет легко определить искомые нагрузки. Для их определения, как известно, следует дважды численно продифференцировать получаемый потенциал, который есть решение бигармонического уравнения, что приводит к накоплению ошибок округления.

Одномерный S-сплайн седьмой степени класса C⁴

Рассмотрим на отрезке [a, b] равномерную сетку $\{x_k\}_{k=0}^{k=K}$, $x_k = a + kh$, h = (b - a)/K - шагсетки. Разобьем отрезок [a, b] на группы, для этого введем на [a, b] еще одну равномерную сетку $\{\xi_l\}_{l=0}^{l=L}, \xi_l = a + lH, H = mh, m \in N$. Таким образом, переходя из одной группы в другую, мы осуществляем сдвиг системы координат и рассматриваем каждый *l*-й полином на отрезке [0, *H*]. Пусть значения приближаемой функции на этой сетке $(y_0, y_1, ..., y_K) \in \mathbf{R}^{K+1}$. Обозначим через

$$P_S\left\{u: u(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7\right\}$$

множество полиномов седьмой степени. Коэффициенты разбиты на два сегмента. Коэффициенты а₀, а₁, а₂, а₃, а₄, задаются из условия гладкости склейки. Здесь использованы четыре коэффициента, так как наш сплайн класса гладкости С⁴. Условия гладкой склейки:

$$a_0^l = g_{l-1}(\xi_l - \xi_{l-1}) = g_{l-1}(H), \qquad a_1^l = g_{l-1}'(H), \dots, a_4^l = \frac{1}{4!}g_{l-1}^{(4)}(H)$$
 при $l = 1, \dots, L-1.$ (1)

Причем в периодическом случае при l = 0 $a_0^0 = g_0(0) = g_{L-1}(H), a_1^0 = g'_{L-1}(H), \dots, a_4^0 =$ $= \frac{1}{4!}g_{L-1}^{(4)}(H)$

В непериодическом случае коэффициенты $a_0^0, a_1^0, a_2^0, a_3^0, a_4^0$ задаются начальными условиями

 $y_0, y'_0, \frac{y''_0}{2!}, \frac{y'^{(3)}_0}{3!}, \frac{y^{(4)}_0}{4!}.$ По остальным коэффициентам в классе P_S ищется такой полином g_l , который минимизирует функционал

$$\Phi^{l}(u) = \sum_{k=0}^{M} (u(\xi_{l} + kh) - y_{ml+k})^{2} \longrightarrow \min(a_{5}, a_{6}, a_{7}).$$

Здесь L — число групп точек (интервалов), на которые разбита исходная таблица значений приближаемой функции, и число полиномов, составляющих сплайн. Кроме того, здесь M + 1 - 1количество точек осреднения квадратичного отклонения на одном интервале; *m* + 1 — количество точек, входящих в область определения *l*-го полинома $g_l; \xi_l$ — точка привязки полинома $g_l; \xi_l$ *М* – *m* + 1 — число таких точек, значения которых участвуют при определении двух соседних полиномов, составляющих S-сплайн; $M \ge m + 1$ [Силаев, Якушина, 1984; Силаев и др., 2007; Силаев, 2009; Силаев, Ингтем, 2010; Силаев, 2010].

Заметим, что в случае если функция задана таблицей, то $y'_0, y''_0, \ldots, y^{(p)}_0$ можно вычислить с помощью формул численного дифференцирования высокого порядка аппроксимации, например:

$$y_0^{(r)} = \left. \frac{d^{(r)} N_n(x)}{dx^r} \right|_{x=0} + O(h^{n+1-r})$$
 при $r = 1, \dots, p,$ (2)

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

где $N_n(x)$ — интерполяционный полином степени *n*, построенный по значениям y_0, y_1, \ldots, y_n . В форме Ньютона этот полином имеет вид

$$N_n(x) = y_0 + \sum_{s=1}^n P_s(y_0, y_1, \dots, y_s) x(x-h) \dots (x-(s-1)h),$$

где

$$P_{s}(y_{0}, y_{1}, \dots, y_{s}) = \sum_{j=0}^{s} C_{s}^{j} y_{s-j} / (s!h^{s}) - s$$
-я разделенная разность.

Будем предполагать, что заданные значения функции y_k известны с некоторой погрешностью. Точность измерения исходных значений функции должна зависеть от выбранного шага дискретности пространства. С уменьшением шага *h* точность измерения должна увеличиваться. Если функция $f \in \mathbb{C}^8[a, b]$ задана в узлах сетки $x_k = a + kh, k = 0, 1, \dots, K$ своими значениями y_k , то для обеспечения точности моделирования требуется ограничить погрешность измерения этих данных условием $|y_k - f(x_k)| \le Ch^8$, где C — некоторая константа, не зависящая от *h*.

Определение 1. *S*-сплайном назовем функцию, которая совпадает с полиномом g_l на каждом отрезке $\xi_l \le x < \xi_{l+1}$. Обозначим ее $S_{m,M}(x)$, параметры *M* и *m* определены выше.

Будем минимизировать функционал Φ^l по коэффициентам a_5, a_6, a_7 . Для этого продифференцируем $\Phi^l(g)$ по этим коэффициентам и полученные производные приравняем к нулю. Получим

$$\begin{cases} a_{5}^{l}h^{5}S_{10} + a_{6}^{l}h^{6}S_{11} + a_{7}^{l}h^{7}S_{12} = c_{1}^{l}, \\ a_{5}^{l}h^{5}S_{11} + a_{6}^{l}h^{6}S_{12} + a_{7}^{l}h^{7}S_{13} = c_{2}^{l}, \\ a_{5}^{l}h^{5}S_{12} + a_{6}^{l}h^{6}S_{13} + a_{7}^{l}h^{7}S_{14} = c_{3}^{l}. \end{cases}$$
(3)

Здесь

$$S_{j} = \sum_{k=0}^{M} k^{j}, \quad c_{j}^{l} = \sum_{k=0}^{M} \left[(y_{ml+k} - a_{0}^{l} - a_{1}^{l}hk - a_{2}^{l}h^{2}k^{2} - a_{3}^{l}h^{3}k^{3} - a_{4}^{l}(hk)^{4})k^{4+j} \right].$$
(4)

Система линейных алгебраических уравнений, которой должны удовлетворять коэффициенты полиномов *S*-сплайна, состоит из уравнений двух видов: а) уравнений склейки для каждой пары последовательных полиномов (1); б) уравнений для определения коэффициентов при старших степенях полиномов по коэффициентам при младших степенях (3). Сделаем замену переменных $\tilde{a}_i = a_i h^i$, i = 0, 1, ..., 7. При этом уравнения (1) будут иметь вид

$$\begin{pmatrix} \tilde{a}_{0}^{l-1} + m\tilde{a}_{1}^{l-1} + m^{2}\tilde{a}_{2}^{l-1} + m^{3}\tilde{a}_{3}^{l-1} + m^{4}\tilde{a}_{4}^{l-1} + m^{5}\tilde{a}_{5}^{l-1} + m^{6}\tilde{a}_{6}^{l-1} + m^{7}\tilde{a}_{7}^{l-1} = \tilde{a}_{0}^{l}, \\ \tilde{a}_{1}^{l-1} + 2m\tilde{a}_{2}^{l-1} + 3m^{2}\tilde{a}_{3}^{l-1} + 4m^{3}\tilde{a}_{4}^{l-1} + 5m^{4}\tilde{a}_{5}^{l-1} + 6m^{5}\tilde{a}_{6}^{l-1} + 7m^{6}\tilde{a}_{7}^{l-1} = \tilde{a}_{1}^{l}, \\ \tilde{a}_{2}^{l-1} + 3m\tilde{a}_{3}^{l-1} + 6m^{2}\tilde{a}_{4}^{l-1} + 10m^{3}\tilde{a}_{5}^{l-1} + 15m^{4}\tilde{a}_{6}^{l-1} + 21m^{5}\tilde{a}_{7}^{l-1} = \tilde{a}_{2}^{l}, \\ \tilde{a}_{3}^{l-1} + 4m\tilde{a}_{4}^{l-1} + 10m^{2}\tilde{a}_{5}^{l-1} + 20m^{3}\tilde{a}_{6}^{l-1} + 35m^{5}\tilde{a}_{7}^{l-1} = \tilde{a}_{3}^{l}, \\ \tilde{a}_{4}^{l-1} + 5m\tilde{a}_{5}^{l-1} + 15m^{2}\tilde{a}_{6}^{l-1} + 35m^{3}\tilde{a}_{7}^{l-1} = \tilde{a}_{4}^{l}. \end{cases}$$

Уравнения из системы b (3) имеют вид

$$\begin{cases} S_{5}\tilde{a}_{0}^{l} + S_{6}\tilde{a}_{1}^{l} + S_{7}\tilde{a}_{2}^{l} + S_{8}\tilde{a}_{3}^{l} + S_{9}\tilde{a}_{4}^{l} + S_{10}\tilde{a}_{5}^{l} + S_{11}\tilde{a}_{6}^{l} + S_{12}\tilde{a}_{9}^{l} = P_{1}^{l}, \\ S_{6}\tilde{a}_{0}^{l} + S_{7}\tilde{a}_{1}^{l} + S_{8}\tilde{a}_{2}^{l} + S_{9}\tilde{a}_{3}^{l} + S_{10}\tilde{a}_{4}^{l} + S_{11}\tilde{a}_{5}^{l} + S_{12}\tilde{a}_{6}^{l} + S_{13}\tilde{a}_{9}^{l} = P_{2}^{l}, \\ S_{7}\tilde{a}_{0}^{l} + S_{8}\tilde{a}_{1}^{l} + S_{9}\tilde{a}_{2}^{l} + S_{10}\tilde{a}_{3}^{l} + S_{11}\tilde{a}_{4}^{l} + S_{12}\tilde{a}_{5}^{l} + S_{13}\tilde{a}_{6}^{l} + S_{14}\tilde{a}_{9}^{l} = P_{3}^{l}, \end{cases}$$

$$\tag{6}$$

2015, T. 7, № 5, C. 977–988

где

$$P_{j}^{l} = \sum_{k=0}^{M} y_{ml+k} k^{p+j}, \quad j = 1, \dots, n-p.$$
⁽⁷⁾

...

Здесь l = 0, ..., L-1 — номер полинома, причем если l = 0, то в периодическом случае выражение \tilde{a}^{l-1} означает \tilde{a}^{L-1} . В дальнейшем, если это не вызовет путаницы, мы будем опускать волну над переменными a_{k}^{l} .

Запишем полученную систему в матричной форме. Для этого обозначим через

$$A_{0} = \begin{vmatrix} S_{5} & S_{6} & S_{7} & S_{8} & S_{9} \\ S_{6} & S_{7} & S_{8} & S_{9} & S_{10} \\ S_{7} & S_{8} & S_{9} & S_{10} & S_{11} \end{vmatrix}, \qquad A_{1} = \begin{vmatrix} S_{10} & S_{11} & S_{12} \\ S_{11} & S_{12} & S_{13} \\ S_{12} & S_{13} & S_{14} \end{vmatrix},$$
$$B_{0} = \begin{vmatrix} 1 & m & m^{2} & m^{3} & m^{4} \\ 0 & 1 & 2m & 3m^{2} & 4m^{3} \\ 0 & 0 & 1 & 3m & 6m^{2} \\ 0 & 0 & 0 & 1 & 4m \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}, \qquad B_{1} = \begin{vmatrix} m^{5} & m^{6} & m^{7} \\ 5m^{4} & 6m^{5} & 7m^{6} \\ 10m^{3} & 15m^{4} & 21m^{5} \\ 10m^{2} & 20m^{3} & 35m^{4} \\ 5m & 15m^{2} & 35m^{3} \end{vmatrix}.$$

Пусть, кроме того,

$$P^{l} = \begin{pmatrix} P_{1}^{l} \\ P_{2}^{l} \\ P_{3}^{l} \end{pmatrix} \times X_{0}^{l} = \begin{pmatrix} a_{0}^{l} \\ a_{1}^{l} \\ a_{2}^{l} \\ a_{3}^{l} \\ a_{4}^{l} \end{pmatrix}, \quad X_{1}^{l} = \begin{pmatrix} a_{5}^{l} \\ a_{6}^{l} \\ a_{7}^{l} \end{pmatrix}, \quad r \neq 0, 1, \dots, L - 1.$$

$$(8)$$

Тогда уравнения из системы (5) примут вид

$$B_0 X_0^l + B_1 X_1^l = X_0^{l+1}, (9)$$

а уравнения из системы (6) —

$$A_0 X_0^l + A_1 X_1^l = P^l. (10)$$

Существование и единственность S-сплайна класса С⁴

Предположим, что т и М таковы, что матрица А1 имеет обратную. Тогда из (10) получаем, что

$$X_1^l = A_1^{-1} P^l - A X_0^l, (11)$$

где $A = A_1^{-1}A_0$. Подставим выражение для X_l^1 в (9). Тогда получим рекуррентное соотношение, связывающее 5 младших коэффициентов l + 1 полинома через 5 младших коэффициентов l полинома:

$$X_0^{l+1} = UX_0^l + \Psi^l, (12)$$

где $\Psi^l = B_1 A_1^{-1} P^l$, матрица устойчивости $U = B_0 - B_1 A_1^{-1} A_0$ имеет размерность 5 × 5.

Рассмотрим сначала непериодический случай. Зададим начальный вектор

$$X_0^0 = \left(y_0, hy'_0, \dots, \frac{1}{4!} h^4 y_0^{(4)} \right)^T,$$

где значения производных, входящих в X_0^0 , могут быть вычислены приближенно с высокой степенью точности с помощью формул численного дифференцирования (2).

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Теорема 1. Пусть числа m, M, p, n таковы, что $detA_1 \neq 0$. Тогда для любой функции f(x), заданной на отрезке [a, b] своими значениями y_k в точках $x_k = a + kh, h = (b - a)/K$, и начального вектора X_0^0 существует единственный непериодический сплайн $S_{m,M}^n[y](x)$ класса C^4 .

Доказательство. Пользуясь формулами (11), (12), последовательно находим $X_1^0, X_0^1, \ldots, X_1^{L-1}$. Тем самым все коэффициенты полиномов, составляющих сплайн, однозначно определены.

Теорема 2. Пусть числа m, M, p, n таковы, что $detA_1 \neq 0$ и собственные числа матрицы U не равны корню степени L из единицы (здесь L — число полиномов, составляющих сплайн). Тогда для любой функции f, заданной на отрезке [a, b] своими значениями y_k в точках $x_k = a + kh, h = (b - a)/K$, существует единственный периодический сплайн $S_{m,M}^n[y]$ класса C^4 .

Доказательство. В периодическом случае применяя рекуррентную формулу (12) *L*-1 раз, получим:

$$X_0^0 = X_0^L = UX_0^{L-1} + \Psi^{L-1} = U(UX_0^{L-2} + \Psi^{L-2}) + \Psi^{L-1} = \dots = U^L X_0^0 + \sum_{s=1}^L U^{L-s} \Psi^{s-1},$$

откуда

$$X_0^0 = (E - U^L)^{-1} \sum_{s=1}^L U^{L-s} \Psi^{s-1}.$$

Затем последовательно находим $X_1^0, X_0^1, \dots, X_1^{L-1}$. Тем самым все коэффициенты полиномов, составляющих периодический сплайн, однозначно определены.

Сходимость S-сплайна класса С⁴

Теорема 3. Пусть периодическая функция $f(x) \in C^8[a, b]$, и пусть выполнено условие

$$|f(x_k) - y_k| \le C_0 h^{8+\varepsilon}, \quad \varepsilon \ge 0.$$
⁽¹³⁾

Пусть, кроме того, числа m, M, p, n таковы, что $detA_1 \neq 0$ и собственные значения матрицы U по модулю меньше единицы, m. e.

$$|\lambda_i| < 1, \quad i = 1, \dots, p+1.$$
 (14)

Тогда периодический сплайн $S_{m,M} \in C^4[a,b]$ с узлами на равномерной сетке для $x \in [a,b]$ удовлетворяет оценкам

$$|f^{(r)}(x) - \frac{d^r}{dx^r} S_{m,M}(x)| \le C_r h^{8-r} \quad \partial_{\mathcal{I}\mathcal{R}} \quad r = 0, 1, \dots, 7;$$
(15)

 $x \neq \xi_l$ npu r = 5, 6, 7; в этом случае $S_{m,M}^{(r)}(x)(\xi_l) \equiv S_{m,M}^{(r)}(x)(\xi_l + 0).$

Аналогичные утверждения справедливы и для непериодического случая. Доказательство производится аналогично доказательству теоремы о сходимости *S*-сплайна в работах [Силаев, Якушина, 1984; Силаев и др., 2007; Силаев, 2009].

Устойчивость S-сплайна седьмой степени класса C⁴

Для устойчивости S-сплайна необходимо, чтобы собственные числа матрицы U по модулю были меньше единицы (а если они еще и различны, то и достаточно). Собственные числа матрицы U определяются из уравнения

$$\det(U - \lambda E) = 0. \tag{16}$$

2015, T. 7, № 5, C. 977–988

А.Н. Федосова, Д.А. Силаев

Как показано в случае кубических сплайнов, для обеспечения этого условия устойчивости необходимо перекрывание. Это означает, что имеются такие элементы исходной таблицы значений функции, которые участвуют в определении коэффициентов не менее двух соседних полиномов, составляющих сплайн. Если перекрывание достаточно большое, то это в ряде случаев является и достаточным условием [Силаев, Якушина, 1984; Силаев, 2009]. На практике наиболее употребительными являются те сплайны, для построения которых используется небольшое число точек осреднения *M*.

Для случая малых значений M (при $3 \le M \le 10$) в результате расчета были получены значения собственных чисел матрицы U. Некоторые наиболее интересные полученные значения m и M, при которых достигаются наименьшие значения $max|\lambda_i|$ и аппроксимация S-сплайнами устойчива, представлены в таблице.

М	т	$\max \lambda_i $									
4	1	0.690	4	2	0.881	5	1	0.715	5	2	0.824
6	1	0.756	6	3	0.770	7	1	0.787	7	2	0.693
7	3	0.790	7	4	0.817	8	1	0.812	8	2	0.698

Собственные числа матрицы U

Авторы благодарят студента ВМК Кочнева Ю. К., который выполнил вычисление собственных чисел матрицы устойчивости U. В дальнейшем M = 7, m = 2 и $\lambda_{\text{max}} = 0,693$, что гарантирует устойчивость.

Выбор базисных функций

Определение 2. Фундаментальный *S*-сплайн $C_i(\varphi)$ — это периодический *S*-сплайн, построенный на отрезке $[0; 2\pi]$ по данным $y = (y_0, y_1, \dots, y_N) \in \mathbb{R}^{N+1}$ вида $Y_j = \{y_i = \delta_{ij} | i = 0, \dots, N\}$. Здесь $\delta_{ij} = \begin{cases} 1, i = j, \\ 0, i \neq j, \end{cases}$ – символ Кронекера. В каждом из таких исходных данных только одно значение равно 1, остальные обнулены. Заметим, что точки 0 и 2π тождественны. Число полиномов, составляющих сплайн, $Q = \frac{N}{m}$ (см. рис. 1).

Рис. 1. Периодические фундаментальные сплайны $C_i(\varphi)$

Аналогично вводится фундаментальный непериодический *S*-сплайн $D_j(r)$, построенный на отрезке $r \in [0; 1]$ по данным $y = (y_0, y_1, \dots, y_{K+1}) \in \mathbf{R}^{K+2}$ и нулевым начальным условиям.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Здесь Kh = 1, в K + 1 точке фундаментальный сплайн строится для лучшего приближения границы. К ним добавляются четыре фундаментальных сплайна $D_{01}(r), \ldots, D_{04}(r)$, построенных по начальным условиям $y^{(j)} = \left(hy_0^{(j)}, \ldots, \frac{h^4y_4^{(j)}}{4!}\right)$, где $\{y_i^{(j)} = \delta_{ij} | i = 0, \ldots, 4\}$, при этом значение функции во всех остальных точках принимается равным нулю, $j = 0 \ldots 4$ (см. рис. 2 и рис. 3).

Рис. 2. Непериодические фундаментальные сплайны $D_i(r)$

Рис. 3. Фундаментальные сплайны $D_{0i}(r)$

Введем на круге равномерную сетку по φ и r (см. рис. 4). Разобьем отрезок $r \in [0; 1]$ K точками, шаг разбиения $h_1 = \frac{1}{K}$. Для лучшей аппроксимации на границе области добавим к разбиению 2 дополнительные точки, выходящие за пределы круга так, в K + 2 точке значение r будет равно 1 + 2h. Отрезок $\varphi \in [0; 2\pi]$ разбиваем N точками с шагом $h_2 = \frac{2\pi}{N}$. Тогда каждая точка сетки будет иметь координату $\{(i, j) | i = \overline{0, N}, j = \overline{0, K + 2}\}$.

Пусть $f \in \mathbb{C}^{8}([0;1] \times [0;2\pi])$. Рассмотрим *S*-сплайн на круге, построенный по значениям некоторой функции *f*.

Теорема 4. Пусть $\tilde{h} = \max(h_1, h_2)$, тогда справедливы следующие оценки:

$$\left. \frac{\partial^{p+q}}{\partial \varphi^p \partial r^q} S(\varphi, r) - \frac{\partial^{p+q}}{\partial \varphi^p \partial r^q} f(\varphi, r) \right| < C_{pq} \widetilde{h}^{8-p-q}, \quad 0 \le p+q \le 7.$$
(17)

2015, T. 7, № 5, C. 977-988

Рис. 4. Разбиение круга

Доказательство следует из построения двумерного сплайна, представления его в виде линейной комбинации фундаментальных одномерных сплайнов, а также из сходимости одномерных сплайнов (см. [Силаев, Коротаев, 2003; Силаев, Коротаев, 2009]).

Моделирование изгиба пластинки

Уравнение Софи Жермен–Лагранжа изгиба пластин [Тимошенко, 1957] имеет вид

$$D\left(\frac{\partial^4 U}{\partial x^4} + 2\frac{\partial^4 U}{\partial x^2 \partial y^2} + \frac{\partial^4 U}{\partial y^4}\right) = q(x, y) \qquad \text{B kpyre } \Omega\{(0 \le r < 1) \times (0 < \varphi \le 2\pi)\},\tag{18}$$

где *U* — прогиб пластинки, *D* — жесткость пластинки при изгибе, *q* — интенсивность поперечной нагрузки. Теория изгибных колебаний пластин была обоснована Густавом Кирхгофом [Kirchhoff, 1850]. Он показал, что достаточно двух граничных условий:

$$U|_{r=1} = f(\varphi), \left. \frac{\partial U}{\partial r} \right|_{r=1} = g(\varphi).$$
(19)

Построение приближенного решения задачи (18), (19) будем искать по методу Галёркина [Марчук, Агашков, 1987; Флетчер, 1988] в виде

$$U(\varphi, r) = \sum_{i=1}^{N} \sum_{j=0}^{K+1} U_{ij} C_i(\varphi) D_j(r) + \sum_{i=1}^{N} \sum_{j=1}^{4} U_{0ij} C_i(\varphi) D_{0j}(r),$$
(20)

где U_{ij}, U_{0ij} — коэффициенты, подлежащие определению. Здесь $\{C_i(\varphi)|i = 1, ..., N\}$ — построенная выше система одномерных фундаментальных периодических сплайнов; $\{D_j(r)|j = 0, ..., K + 1\}$ — одномерные фундаментальные непериодические сплайны, дополненные сплайнами $\{D_0 j(r)|j = 1, ..., 4\}$. Для удобства объединим последние две системы в одну $\widetilde{D}_j(r) = (D_0 j(r), D_j(r))$, в последующем «волну» над $\widetilde{D}_j(r)$ будем опускать. Получим

$$U(\varphi, r) = \sum_{i=1}^{N} \sum_{j=0}^{K+1+4} U_{ij} C_i(\varphi) D_j(r).$$
 (21)

Подставляем (21) в уравнение (18) и вычисляем невязку:

$$V(r,\varphi) = \Delta^2 U(\varphi,r) - \widetilde{q}(\varphi,r) = \sum_{i=1}^N \sum_{j=0}^{K+1+4} U_{ij} \Delta^2 (C_i(\varphi) D_j(r)) - \widetilde{q}(\varphi,r),$$
(22)

где $\widetilde{q} = \frac{q}{D}$.

Бигармонический оператор в полярных координатах имеет вид

$$\Delta^2 = \sum_{i=1}^8 \Delta_i,\tag{23}$$

где

$$\Delta_{1} = \frac{\partial^{4}}{\partial r^{4}}, \quad \Delta_{2} = \frac{1}{r^{2}} \frac{\partial^{4}}{\partial \varphi^{2} \partial r^{2}}, \quad \Delta_{3} = \frac{1}{r^{4}} \frac{\partial^{4}}{\partial \varphi^{4}}, \quad \Delta_{4} = \frac{2}{r} \frac{\partial^{3}}{\partial r^{3}},$$
$$\Delta_{5} = -\frac{2}{r^{3}} \frac{\partial^{3}}{\partial \varphi^{2} \partial r}, \quad \Delta_{6} = -\frac{1}{r^{2}} \frac{\partial^{2}}{\partial r^{2}}, \quad \Delta_{7} = \frac{4}{r^{4}} \frac{\partial^{2}}{\partial \varphi^{2}}, \quad \Delta_{8} = \frac{1}{r^{3}} \frac{\partial}{\partial r}$$

Неизвестные коэффициенты U_{ij} (их $N \times (K + 6)$ штук) будем выбирать из условия ортогональности невязки $V(r, \varphi)$ к выбранным базисным функциям $C_l(\varphi)D_k(r)$, но таким, что узлы $(r_k, \varphi_l) \in \Omega$ (рис. 4). Этим требованиям удовлетворяют все $\{C_l(\varphi) \mid l = \overline{1, N}\}$, а также сплайны $D_k(r)$ с номерами $k = \overline{0, K - 1}$ (точка с номером K является граничной, а K + 1 точка вообще не принадлежит области), а также четыре вспомогательных сплайна $\{D_0 j(r)\}$. Таким образом, возможное число комбинаций базисных функций $C_l(\varphi)D_k(r)$ равно $N \times (K + 4)$. Оставшиеся $2 \times N$ неизвестных определим из граничных условий (20):

$$U(\varphi, r) = \sum_{i=1}^{N} \sum_{j=0}^{K+1+4} U_{ij} C_i(\varphi) D_j(r) = f(\varphi_l), \quad l = \overline{1, N},$$
(24)

$$\left. \frac{\partial U}{\partial r} \right|_{r=1} = \sum_{i=1}^{N} \sum_{j=0}^{K+1+4} U_{ij} C_i(\varphi) D'_j(1) = g(\varphi_l), \quad l = \overline{1, N}.$$
(25)

Умножим невязку $V(r, \varphi)$ на $r^3C_l(\varphi)D_k(r)$ и проинтегрируем по кругу Ω . Получим $N \times (K + 4)$ уравнений вида

$$\sum_{i,j} U_{i,j} \iint_{\Omega} C_l(\varphi) D_k(r) \Delta^2(C_i(\varphi) D_j(r)) r^4 dr d\varphi = \iint_{\Omega} \widetilde{q}(\varphi, r) C_l(\varphi) D_k(r) r^4 dr d\varphi.$$
(26)

Здесь $k = \overline{0, K - 1 + 4}, l = \overline{1, N}$. Интеграл, стоящий в левой части уравнения (26), разбивается на восемь по числу слагаемых, составляющих бигармонический оператор (см. (23)):

$$\iint_{\Omega} C_l(\varphi) D_k(r) \Delta^2(C_i(\varphi) D_j(r)) r^4 dr d\varphi = \sum_{n=1}^8 I_n(i, j, l, k),$$
(27)

где

$$I_{1} = \int_{0}^{2\pi} C_{l}(\varphi)C_{i}(\varphi)d\varphi \int_{0}^{1} D_{j}^{(4)}(r)D_{k}(r)r^{4}dr, \quad I_{2} = \int_{0}^{2\pi} C_{l}(\varphi)C_{i}^{\prime\prime}(\varphi)d\varphi \int_{0}^{1} D_{j}^{\prime\prime}(r)D_{k}(r)r^{2}dr,$$

$$I_{3} = \int_{0}^{2\pi} C_{l}(\varphi)C_{i}^{(4)}(\varphi)d\varphi \int_{0}^{1} D_{j}(r)D_{k}(r)dr, \quad I_{4} = 2\int_{0}^{2\pi} C_{l}(\varphi)C_{i}(\varphi)d\varphi \int_{0}^{1} D_{j}^{\prime\prime\prime}(r)D_{k}(r)r^{3}dr,$$

$$I_{5} = -2\int_{0}^{2\pi} C_{l}(\varphi)C_{i}^{\prime\prime}(\varphi)d\varphi \int_{0}^{1} D_{j}^{\prime}(r)D_{k}(r)rdr, \quad I_{6} = -\int_{0}^{2\pi} C_{l}(\varphi)C_{i}(\varphi)d\varphi \int_{0}^{1} D_{j}^{\prime\prime}(r)D_{k}(r)r^{2}dr,$$

$$2015, T. 7, Ne 5, C. 977-988$$

$$I_{7} = 4 \int_{0}^{2\pi} C_{l}(\varphi) C_{i}''(\varphi) d\varphi \int_{0}^{1} D_{j}(r) D_{k}(r) dr, \quad I_{8} = \int_{0}^{2\pi} C_{l}(\varphi) C_{i}(\varphi) d\varphi \int_{0}^{1} D_{j}'(r) D_{k}(r) r dr.$$

С целью уменьшения порядка производных было произведено интегрирование по частям. Ввиду значительного объема подсчетов данные выкладки в работе не приводятся.

Порядок аппроксимации и устойчивость метода Галёркина [Марчук, Агашков, 1987; Флетчер, 1988] определяются выбором базисных функций, а значит, получаем устойчивую схему восьмого порядка аппроксимации.

Результаты расчетов

В качестве тестового решения была использована функция $w(\varphi, r) = (r - 1)^2 \sin \varphi$. Она удовлетворяет уравнению (18) при

$$\widetilde{q} = \frac{q}{D} = \frac{-3\sin\varphi(r^2 + 1)}{r^4}$$

и нулевых граничных условиях (19).

Под единицей машинного времени (~ 2 мин 40 с) будем понимать время, затраченное на выполнение программной реализации данного метода в указанной тестовой задаче при K = 2 и N = 12 на однопроцессорном компьютере со следующими характеристиками: частота процессора 2.81 ГГц, оперативная память 1 Гб. Здесь N = 6K, так как отрезок $\varphi \in [0; 2\pi]$ примерно в 6 раз больше отрезка $r \in [0; 1]$. Результаты расчетов приведены в следующей таблице.

K	N	K * N	T_{RUN}	X	\widetilde{h}	\widetilde{h}^8	δ
2	6	12	0.05	0.1614	1.0472	1.4448	-
2	12	24	1	$4.6782 * 10^{-3}$	0.5236	$5.6593 * 10^{-3}$	35.7%
2	14	28	1.34	$2.4635 * 10^{-3}$	0.50	$3.9063 * 10^{-3}$	35.7%
4	24	96	9.86	$1.9844 * 10^{-5}$	0.2618	$2.2068 * 10^{-5}$	34.7%
4	26	104	11.83	$1.1123 * 10^{-5}$	0.25	$1.5259 * 10^{-5}$	34.6%
6	36	216	16.46	$6.6789 * 10^{-7}$	0.1745	$8.5973 * 10^{-7}$	33.8%

Таблица 1. Результаты численного эксперимента

Здесь T_{RUN} — время выполнения программы, измеряемое в принятых единицах времени; χ — максимум модуля отклонения точного решения *w* от найденного приближенного *S* во внутренних узлах сетки; $\tilde{h} = \max(h_1, h_2)$ — максимальный шаг разбиения; δ — доля машинного времени, уходящая на вычисление правой части системы. Следует сказать, что приведенные результаты в части подсчетов машинного времени носят условный характер, очевидно, что существуют алгоритмы, реализующие данный метод за лучшее время. Около 35 % общего времени исполнения занимает вычисление правой части системы. Это объясняется использованием символьных переменных, с помощью которых возможно вычисление интегралов с заданной точностью. Возможно, использование квадратурных формул высокого порядка аппроксимации позволило бы сократить это время. Погрешность составила $O(h^8)$, при этом наибольшее отклонение достигается в нуле, там, где функция в силу особенности выбранной правой части начинает быстро возрастать. Даже при малом количестве точек разбиения (K = 2, N = 12, что соответствует $\tilde{h} \approx 0.5236$) различия между точным и приближенным решениями на графике уже не видны (см. рис. 5).

Рис. 5. Приближенное решение задачи при $\tilde{h} \approx 0.523$

В качестве второго тестового решения была использована функция $w(\varphi, r) = r \cos \varphi + (r^2 - 1)r^2 \sin 2\varphi$. Она удовлетворяет однородному бигармоническому уравнению (18) при граничных условиях

$$w|_{r=1} = \cos\varphi, \quad \left. \frac{\partial w}{\partial r} \right|_{r=1} = \cos\varphi(\sin\varphi + 1).$$
 (28)

K	N	K * N	T_{RUN}	X	\widetilde{h}	\widetilde{h}^8
2	12	24	0.643	$1.700 * 10^{-3}$	0.5236	$5.6593 * 10^{-3}$
2	24	48	0.854	$4.1613 * 10^{-4}$	0.50	$3.9063 * 10^{-3}$
4	24	96	6.761	$8.5135 * 10^{-6}$	0.2618	$2.2068 * 10^{-5}$
4	26	104	8.312	$6.7831 * 10^{-6}$	0.25	$1.5259 * 10^{-5}$
6	36	216	14.65	$3.6878 * 10^{-8}$	0.1745	$8.5973 * 10^{-7}$

Таблица 2. Результаты численного эксперимента 2

Гостев А. С., используя *S*-сплайны девятой степени класса C^4 , при аналогичном количестве узлов сетки — 216, получил погрешность $\chi = 1.5223 * 10^{-9}$, однако выполнение программы увеличилось на 20%. При этом им существенно использовалась однородность задачи, так как исходная задача сводилась к системе двух гармонических уравнений и последовательно решались две задачи Дирихле [Тихонов, Самарский, 1953]. Поскольку в данной задаче отсутствовала правая часть, символьные вычисления здесь использовались только для подсчета граничных условий, что привело к сокращению времени выполнения программы.

Заключение

Полученные результаты красноречиво свидетельствуют об эффективности данного метода. При небольшом числе точек разбиения, к примеру 96, удалось получить колоссальную точность. При использовании хорошо реализуемой разностной схемы для обеспечения той же точности потребовалось (96)⁴ (!) точек. Если заменить базис, составленный из специальной системы *S*-сплайнов, на систему тригонометрических функций {cos nx, sin nx}, для обеспечения той же точности потребовалось бы взять ~ 500 слагаемых (!). Применять данный базис при таком количестве слагаемых просто опасно, учитывая слабую сходимость рядов Фурье и накопление ошибок округления.

S-сплайны класса \mathbb{C}^4 предоставляют возможность применять полиномы высоких степеней, не опасаясь потери устойчивости, что дает возможность на несколько порядков сократить количество узлов сетки, а это значит, что для решения ряда задач отпадает потребность в применении суперкомпьютеров.

Список литературы

- Марчук Г. И., Агашков В. И. Введение в проекционно-сеточные методы. М. : Наука, 1987.
- Силаев Д. А., Якушина Г. И. Приближение S-сплайнами гладких функций // Труды семинара имени И. Г. Петровского. 1984. Вып. 10. С. 197.
- Силаев Д. А., Коротаев Д. А. S-сплайн на круге // Международная конференция «Математика. Компьютер. Образование» 2003. Пущино, Январь. С. 157.
- Силаев Д. А. Дважды непрерывно дифференцируемый полулокальный сглаживающий сплайн // Вест. Моск. ун-та. Сер. 1. Математика, механика. 2009. № 5. С. 11–19.
- Силаев Д. А., Коротаев Д. О. Решение краевых задач с помощью S-сплайна // Компьютерные исследования и моделирование. 2009. Т. 1, № 2. С. 161–171.
- Силаев Д. А., Амилющенко А. В., Лукьянов А. И., Коротаев Д. О. Полулокальные сглаживающие сплайны класса C¹ // Труды семинара имени И. Г. Петровского. 2007. Вып. 26. С. 347—367.
- Silaev D. A., Amiliyushenko A. V., Luk'janov A. I., and Korotaev D. O. Semilocal smoothing spline of class C¹ // Journal of Mathematical Sciences. 2007. June. Vol. 143, No. 4. P. 3401–3414.
- Силаев Д. А., Ингтем Ж. Г. Полулокальные сглаживающие сплайны седьмой степени // Вест. Ю-УрГУ. — № 35(211). Сер. Математическое моделирование и программирование. — 2010. — Вып. 6. — С. 104–112.
- Силаев Д. А. Полулокальные сглаживающие S -сплайны // Компьютерные исследования и моделирование. — 2010. — Т. 2, № 4. — С. 349–357.
- *Тимошенко С. П.* История сопротивления материалов с краткими сведениями из теории упругости и теории сооружений. М. : Гостехиздат, 1957.
- *Тихонов А. Н., Самарский А. А.* Уравнения математической физики. М. : Гостехиздат, 1953.
- Флетчер К. Численные методы на основе метода Галёркина. М. : Мир, 1988.
- *Kirchhoff G. R.* Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe // Crelle Journal fur die reine und angewandte Mathematique. 1850. Bd. 40.