Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Введение в распараллеливание алгоритмов и программ
Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 231-272Описаны отличия технологии программирования для параллельных вычислительных систем от технологии последовательного программирования, аргументировано появление новых этапов в технологии: декомпозиция алгоритмов, назначение работ исполнителям, дирижирование и отображение логических исполнителей на физические. Затем кратко рассмотрены вопросы оценки производительности алгоритмов. Обсуждаются вопросы декомпозиции алгоритмов и программ на работы, которые могут бытьвы полнены параллельно.
Ключевые слова: распараллеливание алгоритмов и программ, декомпозиция, асимптотический анализ, граф, ярусно-параллельные формы, условия Бернстайна, истинная зависимость, зависимостьпо выходным данным, антизависимость, распараллеливаниие циклов.
Introduction to the parallelization of algorithms and programs
Computer Research and Modeling, 2010, v. 2, no. 3, pp. 231-272Просмотров за год: 53. Цитирований: 22 (РИНЦ).Difference of software development for parallel computing technology from sequential programming is dicussed. Arguements for introduction of new phases into technology of software engineering are given. These phases are: decomposition of algorithms, assignment of jobs to performers, conducting and mapping of logical to physical performers. Issues of performance evaluation of algorithms are briefly discussed. Decomposition of algorithms and programs into parts that can be executed in parallel is dicussed.
-
Современные методы преодоления катастрофической забывчивости нейронных сетей и экспериментальная проверка вопросов их структуры
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 45-56В данной работе представлены результаты экспериментальной проверки некоторых вопросов, касающихся практического использования методов преодоления катастрофической забывчивости нейронных сетей. Проведено сравнение двух таких современных методов: метода эластичного закрепления весов (EWC, Elastic Weight Consolidation) и метода ослабления скоростей весов (WVA, Weight Velocity Attenuation). Разобраныих преимущества и недостатки в сравнении друг с другом. Показано, что метод эластичного закрепления весов (EWC) лучше применять в задачах, где требуется полностью сохранять выученные навыки на всех задачах в очереди обучения, а метод ослабления скоростей весов (WVA) больше подходит для задач последовательного обучения с сильно ограниченными вычислительными ресурсами или же когда требуется не точное сохранение всех навыков, а переиспользование репрезентаций и ускорение обучения от задачи к задаче. Проверено и подтверждено интуитивное предположение, что ослабление метода WVA необходимо применять к оптимизационному шагу, то есть к приращениям весов нейронной сети, а не к самому градиенту функции потерь, и это справедливо для любого градиентного оптимизационного метода, кроме простейшего стохастического градиентного спуска (SGD), для которого оптимизационный шаг и градиент функции потерь пропорциональны. Рассмотрен выбор оптимальной функции ослабления скоростей весов между гиперболической функцией и экспонентой. Показано, что гиперболическое убывание более предпочтительно, так как, несмотря на сравнимое качество при оптимальных значениях гиперпараметра метода WVA, оно более устойчиво к отклонениям гиперпараметра от оптимального значения (данный гиперпараметр в методе WVA обеспечивает баланс между сохранением старых навыков и обучением новой задаче). Приведены эмпирические наблюдения, которые подтверждают гипотезу о том, что оптимальное значение гиперпараметра не зависит от числа задач в очереди последовательного обучения. Следовательно, данный гиперпараметр может подбираться на небольшом числе задач, а использоваться — на более длинных последовательностях.
Ключевые слова: катастрофическая забывчивость, эластичное закрепление весов, EWC, ослабление скоростей весов, WVA, нейронные сети, последовательное обучение, машинное обучение, искусственный интеллект.
Modern ways to overcome neural networks catastrophic forgetting and empirical investigations on their structural issues
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 45-56This paper presents the results of experimental validation of some structural issues concerning the practical use of methods to overcome catastrophic forgetting of neural networks. A comparison of current effective methods like EWC (Elastic Weight Consolidation) and WVA (Weight Velocity Attenuation) is made and their advantages and disadvantages are considered. It is shown that EWC is better for tasks where full retention of learned skills is required on all the tasks in the training queue, while WVA is more suitable for sequential tasks with very limited computational resources, or when reuse of representations and acceleration of learning from task to task is required rather than exact retention of the skills. The attenuation of the WVA method must be applied to the optimization step, i. e. to the increments of neural network weights, rather than to the loss function gradient itself, and this is true for any gradient optimization method except the simplest stochastic gradient descent (SGD). The choice of the optimal weights attenuation function between the hyperbolic function and the exponent is considered. It is shown that hyperbolic attenuation is preferable because, despite comparable quality at optimal values of the hyperparameter of the WVA method, it is more robust to hyperparameter deviations from the optimal value (this hyperparameter in the WVA method provides a balance between preservation of old skills and learning a new skill). Empirical observations are presented that support the hypothesis that the optimal value of this hyperparameter does not depend on the number of tasks in the sequential learning queue. And, consequently, this hyperparameter can be picked up on a small number of tasks and used on longer sequences.
-
Предсказание производительности избранных типов циклов над одномерными массивами посредством анализа эмбеддингов промежуточных представлений
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 211-224Предложен метод отображения промежуточных представлений C-, C++-программ в пространство векторов (эмбеддингов) для оценки производительности программ на этапе компиляции, без необходимости исполнения. Использование эмбеддингов для данной цели позволяет не проводить сравнение графов исследуемых программ непосредственно, что вычислительно упрощает задачу сравнения программ. Метод основан на серии трансформаций исходного промежуточного представления (IR), таких как: инструментирование — добавление фиктивных инструкций в оптимизационном проходе компилятора в зависимости от разности смещений в текущей инструкции обращения к памяти относительно предыдущей, преобразование IR в многомерный вектор с помощью технологии IR2Vec с понижением размерности по алгоритму t-SNE (стохастическое вложение соседей с t-распределением). В качестве метрики производительности предлагается доля кэш-промахов 1-го уровня (D1 cache misses). Приводится эвристический критерий отличия программ с большей долей кэш-промахов от программ с меньшей долей по их образам. Также описан разработанный в ходе работы проход компилятора, генерирующий и добавляющий фиктивные инструкции IR согласно используемой модели памяти. Приведено описание разработанного программного комплекса, реализующего предложенный способ оценивания на базе компиляторной инфраструктуры LLVM. Проведен ряд вычислительных экспериментов на синтетических тестах из наборов программ с идентичными потоками управления, но различным порядком обращений к одномерному массиву, показано, что коэффициент корреляции между метрикой производительности и расстоянием до эмбеддинга худшей программы в наборе отрицателен вне зависимости от инициализации t-SNE, что позволяет сделать заключение о достоверности эвристического критерия. Также в статье рассмотрен способ генерации тестов. По результатам экспериментов, вариативность значений метрики производительности на исследуемых множествах предложена как метрика для улучшения генератора тестов.
Ключевые слова: математическое моделирование, компиляторы, промежуточные представления программ, эмбеддинги, анализ производительности, статический анализ.
Performance prediction for chosen types of loops over one-dimensional arrays with embedding-driven intermediate representations analysis
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 211-224The method for mapping of intermediate representations (IR) set of C, C++ programs to vector embedding space is considered to create an empirical estimation framework for static performance prediction using LLVM compiler infrastructure. The usage of embeddings makes programs easier to compare due to avoiding Control Flow Graphs (CFG) and Data Flow Graphs (DFG) direct comparison. This method is based on transformation series of the initial IR such as: instrumentation — injection of artificial instructions in an instrumentation compiler’s pass depending on load offset delta in the current instruction compared to the previous one, mapping of instrumented IR into multidimensional vector with IR2Vec and dimension reduction with t-SNE (t-distributed stochastic neighbor embedding) method. The D1 cache miss ratio measured with perf stat tool is considered as performance metric. A heuristic criterion of programs having more or less cache miss ratio is given. This criterion is based on embeddings of programs in 2D-space. The instrumentation compiler’s pass developed in this work is described: how it generates and injects artificial instructions into IR within the used memory model. The software pipeline that implements the performance estimation based on LLVM compiler infrastructure is given. Computational experiments are performed on synthetic tests which are the sets of programs with the same CFGs but with different sequences of offsets used when accessing the one-dimensional array of a given size. The correlation coefficient between performance metric and distance to the worst program’s embedding is measured and proved to be negative regardless of t-SNE initialization. This fact proves the heuristic criterion to be true. The process of such synthetic tests generation is also considered. Moreover, the variety of performance metric in programs set in such a test is proposed as a metric to be improved with exploration of more tests generators.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"