Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'time-delay system':
Найдено статей: 12
  1. Захаров А.П., Брацун Д.А.
    Синхронизации циркадианных ритмов в масштабах гена, клетки и всего организма
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 255-270

    В работе выделяется три характерных масштаба описания биосистемы: микроскопический (размер гена), мезоскопический (размер клетки) и макроскопический (размер организма). Для каждого случая обсуждается подход к моделированию циркадианных ритмов на примере предложенной ранее модели с запаздыванием. На уровне гена использовалось стохастическое описание. Показана устойчивость механизма ритмов по отношению к флуктуациям. На мезоскопическом уровне предложено детерминистское описание в рамках пространственно-распределенной модели. Обнаружен эффект групповой синхронизации колебаний в клетках. Макроскопические эффекты исследованы в рамках дискретной модели, описывающей коллективное поведение большого числа клеток. Обсуждается вопрос о сшивании результатов, полученных на разных уровнях описания. Проводится сравнение с экспериментальными данными.

    Zakharov A.P., Bratsun D.A.
    Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 255-270

    In the paper three characteristic scales of a biological system are proposed: microscopic (gene's size), mesoscopic (cell’s size) and macroscopic level (organism’s size). For each case the approach to modeling of circadian rhythms is discussed on the base of a time-delay model. At gene’s scale the stochastic description has been used. The robustness of rhythms mechanism to the fluctuations has been demonstrated. At the mesoscopic scale we propose the deterministic description within the spatially extended model. It was found the effect of collective synchronization of rhythms in cells. Macroscopic effects have been studied within the discrete model describing the collective behaviour of large amount of cells. The problem of cross-linking of results obtained at different scales is discussed. The comparison with experimental data is given.

    Просмотров за год: 1. Цитирований: 8 (РИНЦ).
  2. Яшина М.В., Таташев А.Г.
    Двухконтурная система с различными по длине кластерами и неодинаковым расположением двух узлов на контурах
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 217-240

    Исследуется система, принадлежащая классу динамических систем, разработанному А. П. Буслаевым (сети Буслаева). В этой системе на каждом из двух замкнутых контуров находится отрезок, называемый кластером и движущийся с постоянной скоростью, если нет задержек. Длины кластеров равны $l_1^{}$ и $l_2^{}$. Имеются две общие точки контуров, называемые узлами. Задержки в движении кластеров обусловлены тем, что два кластера не могут проходить через узел одновременно. Контуры имеют одинаковую длину, принимаемую за единицу. Узлы делят каждый контур на части, длина одной из которых равна $d_i^{}$, а другой — $1-d_i^{}$, $i=1,\,2$, — номер контура. Исследуется спектр средних скоростей системы, т.е. множество пар значений $(v_1^{},\,v_2^{})$, где $v_i^{}$ — средняя скорость движения кластера $i$ с учетом задержек, при различных начальных состояниях и фиксированных значениях $l_1^{}$, $l_2^{}$, $d_1^{}$, $d_2^{}$. Выявлено 12 сценариев поведения системы и для каждого из этих сценариев найдены достаточные условия его реализации, причем при каждом из этих сценариев спектр содержит одну или две пары значений средних скоростей.

    Yashina M.V., Tatashev A.G.
    Double-circuit system with clusters of different lengths and unequal arrangement of two nodes on the circuits
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 217-240

    We study a system that fulfills the class of driving systems developed by A. P. Buslaev (Buslaev networks). In this system, in each of two closed loops there is a segment called a cluster, and it moves at a constant speed if there are no delays. The lengths of the clusters are $l_1^{}$ and $l_2^{}$. There are two common points of the contours, called nodes. Delays in the movement of clusters are due to the fact that two clusters cannot pass through a node at the same time. The contours have the same height, the glazing is accepted. The nodes divide each contour into parts, the length of one of which is equal to $d_i^{}$, and the other $1-d_i^{}$, $i=1,\,2$, — contour number. Studies of the spectrum of average speeds of systems, i.\,e. set of pairs of results $(v_1^{},\,v_2^{})$, where $v_i^{}$ — cluster of average movement speed $i$ taking into account delays, for different initial states and fixed values $l_1^{}$, $l_2^{}$, $d_1^{}$, $d_2^{}$. 12 scenarios of system behavior have been identified, and for each of these manifestations sufficient conditions for its implementation have been found, and each of these observed spectra contains one or two pairs of average velocities.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.