Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование пространственно-временной миграции близкородственных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения.
Modeling of spatialtemporal migration for closely related species
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 477-488We consider a model of populations that are closely related and share a common areal. System of nonlinear parabolic equations is formulated that incorporates nonlinear diffusion and migration flows induced by nonuniform densities of population and carrying capacity. We employ the method of lines and study the impact of migration on scenarios of local competition and coexistence of species. Conditions on system parameters are determined when a nontrivial family of steady states is formed.
Keywords: dynamics of populations, nonlinear parabolic equations.Просмотров за год: 6. Цитирований: 9 (РИНЦ). -
О динамике косимметричных систем хищников и жертв
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.
Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.
Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.
Ключевые слова: математическая экология, теория косимметрии, сосуществование конкурентов, хищник–жертва, функциональный отклик Холлинга, эффект Олли.
Regarding the dynamics of cosymmetric predator – prey systems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 799-813Просмотров за год: 12. Цитирований: 3 (РИНЦ).To study nonlinear effects of biological species interactions numerical-analytical approach is being developed. The approach is based on the cosymmetry theory accounting for the phenomenon of the emergence of a continuous family of solutions to differential equations where each solution can be obtained from the appropriate initial state. In problems of mathematical ecology the onset of cosymmetry is usually connected with a number of relationships between the parameters of the system. When the relationships collapse families vanish, we get a finite number of isolated solutions instead of a continuum of solutions and transient process can be long-term, dynamics taking place in a neighborhood of a family that has vanished due to cosymmetry collapse.
We consider a model for spatiotemporal competition of predators or prey with an account for directed migration, Holling type II functional response and nonlinear prey growth function permitting Alley effect. We found out the conditions on system parameters under which there is linear with respect to population densities cosymmetry. It is demonstated that cosymmetry exists for any resource function in case of heterogeneous habitat. Numerical experiment in MATLAB is applied to compute steady states and oscillatory regimes in case of spatial heterogeneity.
The dynamics of three population interactions (two predators and a prey, two prey and a predator) are considered. The onset of families of stationary distributions and limit cycle branching out of equlibria of a family that lose stability are investigated in case of homogeneous habitat. The study of the system for two prey and a predator gave a wonderful result of species coexistence. We have found out parameter regions where three families of stable solutions can be realized: coexistence of two prey in absence of a predator, stationary and oscillatory distributions of three coexisting species. Cosymmetry collapse is analyzed and long-term transient dynamics leading to solutions with the exclusion of one of prey or extinction of a predator is established in the numerical experiment.
-
От однородного к неоднородному электронному аналогу ДНК
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.
Ключевые слова: моделирование динамики ДНК, уравнение синус-Гордона, линия Джозефсона, неоднородный электронный аналог.
From homogeneous to inhomogeneous electronic analogue of DNA
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.
-
Исследование усредненной модели окислительной регенерации закоксованного катализатора
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.
Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.
В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.
В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.
В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.
Ключевые слова: окислительная регенерация катализатора, химическая кинетика, нелинейные системы обыкновенных дифференциальных уравнений, численный метод Кутты–Мерсона.
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
О допустимой интенсивности лазерного излучения в оптической системе и о технологии измерения коэффициента поглощения его мощности
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1025-1044Лазерное повреждение прозрачных твердых тел является основным фактором, ограничивающим выходную мощность лазерных систем. Для лазерных дальномеров наиболее вероятной причиной разрушения элементов оптической системы (линз, зеркал), реально, как правило, несколько запыленных, является не оптический пробой в результате лавинной ионизации, а такое тепловое воздействие на пылинку, осевшую на элементе оптической системы (ЭОС), которое приводит к ее возгоранию. Именно возгорание пылинки инициирует процесс повреждения ЭОС.
Рассматриваемая модель этого процесса учитывает нелинейный закон теплового излучения Стефана – Больцмана и бесконечное тепловое воздействие периодического излучения на ЭОСи пылинку. Эта модель описывается нелинейной системой дифференциальных уравнений для двух функций: температуры ЭОСи температуры пылинки. Доказывается, что в силу накапливающего воздействия периодического теплового воздействия процесс достиже- ния температуры возгорания пылинки происходит практически при любых априори возможных изменениях в этом процессе теплофизических параметров ЭОСи пылинки, а также коэффициентов теплообмена между ними и окружающим их воздухом. Усреднение этих параметров по переменным, относящимся как к объему, так и к поверхностям пылинки и ЭОС, корректно при указанных в работе естественных ограничениях. А благодаря рассмотрению задачи (включая численные результаты) в безразмерных единицах измерения, охвачен весь реально значимый спектр теплофизических параметров.
Проведенное тщательное математическое исследование соответствующей нелинейной системы дифференциальных уравнений впервые позволило для общего случая теплофизических параметров и характеристик теплового воздействия периодического лазерного излучения найти формулу для значения той допустимой интенсивности излучения, которая не приводит к разрушению ЭОСв результате возгорания пылинки, осевшей на ЭОС. Найденное в работе для общего случая теоретическое значение допустимой интенсивности в частном случае данных лазерного комплекса обсерватории в г. Грассе (на юге Франции) практически соответствует полученному там экспериментальному значению.
Наряду с решением основной задачи получена в качестве побочного результата формула для коэффициента поглощения мощности лазерного излучения элементом оптической системы, выраженная в терминах четырех безразмерных параметров: относительной интенсивности лазерного излучения, относительной освещенности ЭОС, относительного коэффициента теплоотдачи от ЭОСк окружающему его воздуху и относительной установившейся температуры ЭОС.
Ключевые слова: элемент оптической системы, тепловое разрушение, интенсивность лазерного излучения, коэффициент поглощения мощности лазерного излучения.
On the permissible intensity of laser radiation in the optical system and on the technology for measuring the absorption coefficient of its power
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1025-1044Laser damage to transparent solids is a major limiting factor output power of laser systems. For laser rangefinders, the most likely destruction cause of elements of the optical system (lenses, mirrors) actually, as a rule, somewhat dusty, is not an optical breakdown as a result of avalanche, but such a thermal effect on the dust speck deposited on an element of the optical system (EOS), which leads to its ignition. It is the ignition of a speck of dust that initiates the process of EOS damage.
The corresponding model of this process leading to the ignition of a speck of dust takes into account the nonlinear Stefan –Boltzmann law of thermal radiation and the infinite thermal effect of periodic radiation on the EOS and the speck of dust. This model is described by a nonlinear system of differential equations for two functions: the EOS temperature and the dust particle temperature. It is proved that due to the accumulating effect of periodic thermal action, the process of reaching the dust speck ignition temperature occurs almost at any a priori possible changes in this process of the thermophysical parameters of the EOS and the dust speck, as well as the heat exchange coefficients between them and the surrounding air. Averaging these parameters over the variables related to both the volume and the surfaces of the dust speck and the EOS is correct under the natural constraints specified in the paper. The entire really significant spectrum of thermophysical parameters is covered thanks to the use of dimensionless units in the problem (including numerical results).
A thorough mathematical study of the corresponding nonlinear system of differential equations made it possible for the first time for the general case of thermophysical parameters and characteristics of the thermal effect of periodic laser radiation to find a formula for the value of the permissible radiation intensity that does not lead to the destruction of the EOS as a result of the ignition of a speck of dust deposited on the EOS. The theoretical value of the permissible intensity found in the general case in the special case of the data from the Grasse laser ranging station (south of France) almost matches that experimentally observed in the observatory.
In parallel with the solution of the main problem, we derive a formula for the power absorption coefficient of laser radiation by an EOS expressed in terms of four dimensionless parameters: the relative intensity of laser radiation, the relative illumination of the EOS, the relative heat transfer coefficient from the EOS to the surrounding air, and the relative steady-state temperature of the EOS.
-
Моделирование процесса истощения газоконденсатного пласта
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.
В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.
Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.
Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 ◦С) и карбонатного (при 60 ◦С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.
Ключевые слова: компьютерное моделирование, многокомпонентная система углеводородов.
Simulation of the gas condensate reservoir depletion
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.
In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.
The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.
Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.
-
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
Ключевые слова: пиролиз пропана, математическая модель, химическая кинетика, анализ чувствительности, анализ идентифицируемости.
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
-
Разработка вычислительной среды для математического моделирования сверхпроводящих наноструктур с магнетиком
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1349-1358В настоящее время основная исследовательская деятельность в области нанотехнологий направлена на создание, изучение и применение новых материалов и новых структур. Большое внимание в последнее время привлекает возможность управления магнитными свойствами с помощью сверхпроводящего тока, а также влияние магнитной динамики на вольт-амперные характеристики гибридных наноструктур типа «сверхпроводник/ферромагнетик» (S/F). В частности, к таким структурам относятся джозефсоновский S/F/S-переход или молекулярные наномагниты, связанные с джозефсоновскими переходами. Теоретические исследования динамики подобных структур неизменно приводят к моделям, расчет которых требует численного решения большого количества нелинейных уравнений. Численное моделирование гибридных наноструктур «сверхпроводник/магнетик» подразумевает расчет как магнитной динамики, так и динамики сверхпроводящей фазы, что многократно увеличивает их комплексность и масштабность, поэтому возникает задача решения сложных систем нелинейных дифференциальных уравнений, что требует значительных временных и вычислительных ресурсов.
На сегодняшний день активно развиваются алгоритмы и фреймворки для моделирования динамики намагничивания в различных структурах. Однако функционал существующих пакетов не позволяет в полной мере реализовать нужную схему вычислений.
Целью настоящей работы является разработка единой вычислительной среды для моделирования гибридных наноструктур «сверхпроводник/магнетик», предоставляющей доступ к решателям и разработанным алгоритмам, позволяющей проводить исследования сверхпроводящих элементов в наноразмерных структурах с магнетиками и гибридных квантовых материалов. В работе представлены результаты использования разрабатываемой вычислительной среды по исследованию резонансных явлений в системе наномагнита, связанного с джозефсоновским переходом. Для исследования возможности переориентации намагниченности в зависимости от параметров модели численно решалась задача Коши для системы нелинейных уравнений. Непосредственно сама вычислительная среда разрабатывалась и развернута на базе гетерогенной вычислительной платформы HybriLIT. Проведенное в рамках вычислительной среды исследование показало эффективность применения развернутого стека технологий и перспективность его использования в дальнейшем для оценки физических параметров в гибридных наноструктурах «сверхпроводник/магнетик».
Ключевые слова: численное моделирование, гибридные наноструктуры, джозефсоновские переходы, Jupyter Notebook, вычислительная среда, алгоритм, облачная платформа.
Development of a computational environment for mathematical modeling of superconducting nanostructures with a magnet
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1349-1358Now days the main research activity in the field of nanotechnology is aimed at the creation, study and application of new materials and new structures. Recently, much attention has been attracted by the possibility of controlling magnetic properties using a superconducting current, as well as the influence of magnetic dynamics on the current–voltage characteristics of hybrid superconductor/ferromagnet (S/F) nanostructures. In particular, such structures include the S/F/S Josephson junction or molecular nanomagnets coupled to the Josephson junctions. Theoretical studies of the dynamics of such structures need processes of a large number of coupled nonlinear equations. Numerical modeling of hybrid superconductor/magnet nanostructures implies the calculation of both magnetic dynamics and the dynamics of the superconducting phase, which strongly increases their complexity and scale, so it is advisable to use heterogeneous computing systems.
In the course of studying the physical properties of these objects, it becomes necessary to numerically solve complex systems of nonlinear differential equations, which requires significant time and computational resources.
The currently existing micromagnetic algorithms and frameworks are based on the finite difference or finite element method and are extremely useful for modeling the dynamics of magnetization on a wide time scale. However, the functionality of existing packages does not allow to fully implement the desired computation scheme.
The aim of the research is to develop a unified environment for modeling hybrid superconductor/magnet nanostructures, providing access to solvers and developed algorithms, and based on a heterogeneous computing paradigm that allows research of superconducting elements in nanoscale structures with magnets and hybrid quantum materials. In this paper, we investigate resonant phenomena in the nanomagnet system associated with the Josephson junction. Such a system has rich resonant physics. To study the possibility of magnetic reversal depending on the model parameters, it is necessary to solve numerically the Cauchy problem for a system of nonlinear equations. For numerical simulation of hybrid superconductor/magnet nanostructures, a computing environment based on the heterogeneous HybriLIT computing platform is implemented. During the calculations, all the calculation times obtained were averaged over three launches. The results obtained here are of great practical importance and provide the necessary information for evaluating the physical parameters in superconductor/magnet hybrid nanostructures.
-
Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.
A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.
-
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
Ключевые слова: моделирование социума, напряженность, дифференциальные уравнения, косимметрия, семейства равновесий, предельные циклы, мультистабильност.
Mathematical model of political differentiation under social tension
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.
To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.
This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"