Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'storage architecture':
Найдено статей: 3
  1. Богданов А.В., Ганкевич И.Г., Гайдучок В.Ю., Южанин Н.В.
    Запуск приложений на гибридном кластере
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 475-483

    Гибридный кластер подразумевает использование вычислительных ресурсов с различными архитектурами. Как правило, в таких системах используется CPU распространенной архитектуры (например, x86_64) и GPU (например, NVIDIA CUDA). Создание и эксплуатация подобного кластера требует определенного опыта: для того чтобы задействовать все вычислительные мощности такой системы и получить существенное ускорение на задачах, требуется учесть множество факторов. К таким факторам относятся как характеристики оборудования (например, особенности сетевой инфраструктуры, хранилища, архитектуры GPU), так и характеристики программного обеспечения (например, реализация MPI, библиотеки для работы с GPU). Таким образом для эффективных научных расчетов на подобных системах требуется помнить о характеристиках ускорителя (GPU), особенностях программного обеспечения, характеристиках задачи и о многих других факторах.

    В этой статье анализируются достоинства и недостатки гибридных вычислений. Будут приведены результаты запуска некоторых тестов и научных приложений, использующих GPGPU. Основное внимание уделено программных продуктах с открытым исходным кодом, которые поддерживают работу с GPGPU.

    Существует несколько подходов для организации гетерогенных вычислений. В данной статье мы рассмотрим приложения, использующие CUDA и OpenCL. CUDA довольно часто используется в подобных гибридных системах, в то время как переносимость OpenCL-приложений может сыграть решающую роль при выборе средства для разработки. Мы также уделим внимание системам с несколькими GPU, которые все чаще используются в рамках подобных кластеров. Вычисления проводились на гибридном кластере ресурсного центра «Вычислительный центр СПбГУ».

    Bogdanov A.V., Gankevich I.G., Gayduchok V.Yu., Yuzhanin N.V.
    Running applications on a hybrid cluster
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 475-483

    A hybrid cluster implies the use of computational devices with radically different architectures. Usually, these are conventional CPU architecture (e.g. x86_64) and GPU architecture (e. g. NVIDIA CUDA). Creating and exploiting such a cluster requires some experience: in order to harness all computational power of the described system and get substantial speedup for computational tasks many factors should be taken into account. These factors consist of hardware characteristics (e.g. network infrastructure, a type of data storage, GPU architecture) as well as software stack (e.g. MPI implementation, GPGPU libraries). So, in order to run scientific applications GPU capabilities, software features, task size and other factors should be considered.

    This report discusses opportunities and problems of hybrid computations. Some statistics from tests programs and applications runs will be demonstrated. The main focus of interest is open source applications (e. g. OpenFOAM) that support GPGPU (with some parts rewritten to use GPGPU directly or by replacing libraries).

    There are several approaches to organize heterogeneous computations for different GPU architectures out of which CUDA library and OpenCL framework are compared. CUDA library is becoming quite typical for hybrid systems with NVIDIA cards, but OpenCL offers portability opportunities which can be a determinant factor when choosing framework for development. We also put emphasis on multi-GPU systems that are often used to build hybrid clusters. Calculations were performed on a hybrid cluster of SPbU computing center.

    Просмотров за год: 4.
  2. Богданов А.В., Тхурейн Киав Л.
    Хранилища баз данных в обработке в облаке
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 493-498

    Хранение — это существенная и дорогая часть облачных вычислений как с точки зрения требований сети, так и организации доступа к данным, поэтому выбор архитектуры хранения может быть критическим для любого приложения. В этой работе мы сможем посмотреть на типы облачных архитектур для обработки и хранения данных, основанных на доказанной технологии хранения в сети масштаба пред- приятия. Преимущество облачных вычислений — это способность визуализировать и разделять ресурсы среди различных приложений для наилучшего использования сервера. Мы обсуждаем и оцениваем распределенную обработку данных, архитектуры баз данных для облачных вычислений и очередь баз данных в локальной сети и для условий реального времени.

    Bogdanov A.V., Thurein Kyaw L.
    Storage database in cloud processing
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 493-498

    Storage is the essential and expensive part of cloud computation both from the point of view of network requirements and data access organization. So the choice of storage architecture can be crucial for any application. In this article we can look at the types of cloud architectures for data processing and data storage based on the proven technology of enterprise storage. The advantage of cloud computing is the ability to virtualize and share resources among different applications for better server utilization. We are discussing and evaluating distributed data processing, database architectures for cloud computing and database query in the local network and for real time conditions.

    Просмотров за год: 3.
  3. Кирьянов А.К.
    Поддержка протокола GridFTP с возможностью перенаправления соединений в DMLite Title
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 543-547

    Одним из наиболее широко используемых решений для хранения данных в WLCG является Disk Pool Manager (DPM), разрабатываемый и поддерживаемый группой SDC/ID в ЦЕРНе. Недавно старый код DPM был практически переписан с нуля для решения накопившихся проблем с масштабируемостью и расширением функциональности.

    Новая система была названа DMLite. В отличие от DPM, который был реализован в виде нескольких демонов, DMLite выполнена в виде программной библиотеки, которая может быть непосредственно загружена приложением. Такой подход значительно повышает общую производительность и скорость обработки транзакций, избегая ненужного межпроцессного взаимодействия через сеть, а также узких мест в многопоточной обработке.

    DMLite имеет модульную архитектуру, при которой основная библиотека обеспечивает только несколько базовых функций. Системы хранения данных, а также протоколы доступа к ним реализованы в виде подключаемых модулей (plug-ins). Конечно, DMLite не смогла бы полностью заменить DPM без поддержки протокола GridFTP, наиболее широко используемого для передачи данных в WLCG.

    В DPM поддержка протокола GridFTP была реализована в виде модуля Data Storage Interface (DSI) для GridFTP сервера Globus. В DMLite было решено переписать модуль GridFTP с нуля, чтобы, во-первых, воспользоваться новыми возможностями DMLite, а во-вторых, добавить недостающую функциональность. Наиболее важным отличием по сравнению со старой версией является возможность перенаправления соединений.

    При использовании старого интерфейса GridFTP клиенту было необходимо предварительно связаться со службой SRM на головном узле хранилища, чтобы получить Transfer URL (TURL), необходимый для обращения к файлу. С новым интерфейсом GridFTP делать этот промежуточный шаг не требуется: клиент может сразу подключиться к службе GridFTP на головном узле хранилища и выполнять чтение-запись используя логические имена файлов (LFNs). Канал передачи данных при этом будет автоматически перенаправлен на соответствующий дисковый узел.

    Такая схема работы делает одну из наиболее часто используемых функций SRM ненужной, упрощает доступ к файлам и повышает производительность. Это также делает DMLite более привлекательным выбором для виртуальных организаций, не относящихся к БАК, поскольку они никогда не были особо заинтересованы в SRM.

    Новый интерфейс GridFTP также открывает возможности для хранения данных на множестве альтернативных систем, поддерживаемых DMLite, таких как HDFS, S3 и существующие пулы DPM.

    Kiryanov A.K.
    GridFTP frontend with redirection for DMlite
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 543-547

    One of the most widely used storage solutions in WLCG is a Disk Pool Manager (DPM) developed and supported by SDC/ID group at CERN. Recently DPM went through a massive overhaul to address scalability and extensibility issues of the old code.

    New system was called DMLite. Unlike the old DPM that was based on daemons, DMLite is arranged as a library that can be loaded directly by an application. This approach greatly improves performance and transaction rate by avoiding unnecessary inter-process communication via network as well as threading bottlenecks.

    DMLite has a modular architecture with its core library providing only the very basic functionality. Backends (storage engines) and frontends (data access protocols) are implemented as plug-in modules. Doubtlessly DMLite wouldn't be able to completely replace DPM without GridFTP as it is used for most of the data transfers in WLCG.

    In DPM GridFTP support was implemented in a Data Storage Interface (DSI) module for Globus’ GridFTP server. In DMLite an effort was made to rewrite a GridFTP module from scratch in order to take advantage of new DMLite features and also implement new functionality. The most important improvement over the old version is a redirection capability.

    With old GridFTP frontend a client needed to contact SRM on the head node in order to obtain a transfer URL (TURL) before reading or writing a file. With new GridFTP frontend this is no longer necessary: a client may connect directly to the GridFTP server on the head node and perform file I/O using only logical file names (LFNs). Data channel is then automatically redirected to a proper disk node.

    This renders the most often used part of SRM unnecessary, simplifies file access and improves performance. It also makes DMLite a more appealing choice for non-LHC VOs that were never much interested in SRM.

    With new GridFTP frontend it's also possible to access data on various DMLite-supported backends like HDFS, S3 and legacy DPM.

    Просмотров за год: 1.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.