Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'single shot detector':
Найдено статей: 2
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 5-6
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 5-6
  2. Петров М.Н., Зимина С.В., Дьяченко Д.Л., Дубоделов А.В., Симаков С.С.
    Двухпроходная модель Feature-Fused SSD для детекции разномасштабных изображений рабочих на строительной площадке
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 57-73

    При распознавании рабочих на изображениях строительной площадки, получаемых с камер наблюдения, типичной является ситуация, при которой объекты детекции имеют сильно различающийся пространственный масштаб относительно друг друга и других объектов. Повышение точности детекции мелких объектов может быть обеспечено путем использования Feature-Fused модификации детектора SSD (Single Shot Detector). Вместе с применением на инференсе нарезки изображения с перекрытием такая модель хорошо справляется с детекцией мелких объектов. Однако при практическом использовании данного подхода требуется ручная настройка параметров нарезки. При этом снижается точность детекции объектов на сценах, отличающихся от сцен, использованных при обучении, а также крупных объектов. В данной работе предложен алгоритм автоматического выбора оптимальных параметров нарезки изображения в зависимости от соотношений характерных геометрических размеров объектов на изображении. Нами разработан двухпроходной вариант детектора Feature-Fused SSD для автоматического определения параметров нарезки изображения. На первом проходе применяется усеченная версия детектора, позволяющая определять характерные размеры объектов интереса. На втором проходе осуществляется финальная детекция объектов с параметрами нарезки, выбранными после первого прохода. Был собран датасет с изображениями рабочих на строительной площадке. Датасет включает крупные, мелкие и разноплановые изображения рабочих. Для сравнения результатов детекции для однопроходного алгоритма без разбиения входного изображения, однопроходного алгоритма с равномерным разбиением и двухпроходного алгоритма с подбором оптимального разбиения рассматривались тесты по детекции отдельно крупных объектов, очень мелких объектов, с высокой плотностью объектов как на переднем, так и на заднем плане, только на заднем плане. В диапазоне рассмотренных нами случаев наш подход превосходит подходы, взятые в сравнение, позволяет хорошо бороться с проблемой двойных детекций и демонстрирует качество 0,82–0,91 по метрике mAP (mean Average Precision).

    Petrov M.N., Zimina S.V., Dyachenko D.L., Dubodelov A.V., Simakov S.S.
    Dual-pass Feature-Fused SSD model for detecting multi-scale images of workers on the construction site
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 57-73

    When recognizing workers on images of a construction site obtained from surveillance cameras, a situation is typical in which the objects of detection have a very different spatial scale relative to each other and other objects. An increase in the accuracy of detection of small objects can be achieved by using the Feature-Fused modification of the SSD detector. Together with the use of overlapping image slicing on the inference, this model copes well with the detection of small objects. However, the practical use of this approach requires manual adjustment of the slicing parameters. This reduces the accuracy of object detection on scenes that differ from the scenes used in training, as well as large objects. In this paper, we propose an algorithm for automatic selection of image slicing parameters depending on the ratio of the characteristic geometric dimensions of objects in the image. We have developed a two-pass version of the Feature-Fused SSD detector for automatic determination of optimal image slicing parameters. On the first pass, a fast truncated version of the detector is used, which makes it possible to determine the characteristic sizes of objects of interest. On the second pass, the final detection of objects with slicing parameters selected after the first pass is performed. A dataset was collected with images of workers on a construction site. The dataset includes large, small and diverse images of workers. To compare the detection results for a one-pass algorithm without splitting the input image, a one-pass algorithm with uniform splitting, and a two-pass algorithm with the selection of the optimal splitting, we considered tests for the detection of separately large objects, very small objects, with a high density of objects both in the foreground and in the background, only in the background. In the range of cases we have considered, our approach is superior to the approaches taken in comparison, allows us to deal well with the problem of double detections and demonstrates a quality of 0.82–0.91 according to the mAP (mean Average Precision) metric.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.