Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'sensors fusion':
Найдено статей: 3
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 279-283
    Просмотров за год: 18.
  2. Веренцов С.И., Магеррамов Э.А., Виноградов В.А., Гизатуллин Р.И., Алексеенко А.Е., Холодов Я.А.
    Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303

    Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.

    Verentsov S.I., Magerramov E.A., Vinogradov V.A., Gizatullin R.I., Alekseenko A.E., Kholodov Y.A.
    Bayesian localization for autonomous vehicle using sensor fusion and traffic signs
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 295-303

    The localization of a vehicle is an important task in the field of intelligent transportation systems. It is well known that sensor fusion helps to create more robust and accurate systems for autonomous vehicles. Standard approaches, like extended Kalman Filter or Particle Filter, are inefficient in case of highly non-linear data or have high computational cost, which complicates using them in embedded systems. Significant increase of precision, especially in case when GPS (Global Positioning System) is unavailable, may be achieved by using landmarks with known location — such as traffic signs, traffic lights, or SLAM (Simultaneous Localization and Mapping) features. However, this approach may be inapplicable if a priori locations are unknown or not accurate enough. We suggest a new approach for refining coordinates of a vehicle by using landmarks, such as traffic signs. Core part of the suggested system is the Bayesian framework, which refines vehicle location using external data about the previous traffic signs detections, collected with crowdsourcing. This paper presents an approach that combines trajectories built using global coordinates from GPS and relative coordinates from Inertial Measurement Unit (IMU) to produce a vehicle's trajectory in an unknown environment. In addition, we collected a new dataset, including from smartphone GPS and IMU sensors, video feed from windshield camera, which were recorded during 4 car rides on the same route. Also, we collected precise location data from Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) device, which can be used for validation. This RTK-GNSS system was used to collect precise data about the traffic signs locations on the route as well. The results show that the Bayesian approach helps with the trajectory correction and gives better estimations with the increase of the amount of the prior information. The suggested method is efficient and requires, apart from the GPS/IMU measurements, only information about the vehicle locations during previous traffic signs detections.

    Просмотров за год: 22.
  3. Ahmed M., Hegazy M., Климчик А.С., Боби Р.А.
    Lidar and camera data fusion in self-driving cars
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1239-1253

    Sensor fusion is one of the important solutions for the perception problem in self-driving cars, where the main aim is to enhance the perception of the system without losing real-time performance. Therefore, it is a trade-off problem and its often observed that most models that have a high environment perception cannot perform in a real-time manner. Our article is concerned with camera and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its input from Lidar as well as the output from the 2D detector that take its input from the camera, to give better perception output than any of them separately, ensuring that it is able to work in real-time. We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model (Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar and camera information with a fast and efficient late fusion technique that is discussed in detail in this article. We used the mean average precision (mAP) metric in order to evaluate our object detection model and to compare the proposed approach with them as well. At the end, we showed the results on the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset. We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware configurations which proved that our proposed approach could give good results and work efficiently in practical situations in a real-time manner.

    Ahmed M., Hegazy M., Klimchik A.S., Boby R.A.
    Lidar and camera data fusion in self-driving cars
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1239-1253

    Sensor fusion is one of the important solutions for the perception problem in self-driving cars, where the main aim is to enhance the perception of the system without losing real-time performance. Therefore, it is a trade-off problem and its often observed that most models that have a high environment perception cannot perform in a real-time manner. Our article is concerned with camera and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its input from Lidar as well as the output from the 2D detector that take its input from the camera, to give better perception output than any of them separately, ensuring that it is able to work in real-time. We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model (Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar and camera information with a fast and efficient late fusion technique that is discussed in detail in this article. We used the mean average precision (mAP) metric in order to evaluate our object detection model and to compare the proposed approach with them as well. At the end, we showed the results on the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset. We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware configurations which proved that our proposed approach could give good results and work efficiently in practical situations in a real-time manner.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.