Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'photosystem':
Найдено статей: 4
  1. Зленко Д.В., Стадничук И.Н., Красильников П.М.
    Молекулярная модель образования комплекса ОСР с фикобилисомой
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 761-774

    Построена молекулярная модель взаимодействия фикобилисомыс ОСР, белком-тушителем, регулирующим передачу энергии от фикобилисом к фотосистемам в пигментном аппарате цианобактерий. Полученная модель не требует нарушения известной по рентгеноструктурным данным пространственной структуры взаимодействующих белков, а также позволяет удовлетворительно описать процесс переноса энергии к ОСР от фикобилисомы. Методом MM–PBSA рассчитана свободная энергия образования комплекса. Показано, что свободная энергия имеет величину не более нескольких десятков кДж/моль, что хорошо согласуется с наблюдаемой в эксперименте небольшой устойчивостью комплекса. Показано, что удельная свободная энергия взаимодействия рассматриваемых в модели весьма гидрофильных белков друг с другом примерно в два раза превышает удельную энергию их взаимодействия с водой, что свидетельствует о высокой комплементарности контактирующих белковых поверхностей и является сильным аргументом в пользу предложенной модели.

    Zlenko D.V., Stadnichuk I.N., Krasilnikov P.M.
    Molecular model of OCP-phycobilisome complex formation
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 761-774

    A molecular model of phicobilisome complex with a quenching protein OCP which regulates the energy transfer from phicobilisome to photosystem in photosynthetic apparatus of cyanobacteria has been developed. In the model obtained a well known spatial structure of interacting proteins remains intact and also the energy transfer from phycobilisome to OCP with reasonable rates is possible. Free energy of complex formation was calculated using MM–PBSA approach. By the order of magnitude this energy is about tens of kJ/mole. This value correlates well with experimental observed low stability of this complex. The specific surface energy of interaction between hydrophylic phicobilisome and OCP is twice larger than specific surface energy of their interaction with water. This reflects a high molecular complementary of interacting protein surfaces and is a strong pro argument for proposed model.

  2. Абатурова А.М., Коваленко И.Б., Ризниченко Г.Ю., Рубин А.Б.
    Исследование образования комплекса флаводоксина и фотосистемы 1 методами прямого многочастичного компьютерного моделирования
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 85-91

    С помощью компьютерной модели, основанной на методах многочастичного прямого моделирования и броуновской динамики, изучается кинетика образования комплекса между компонентами фотосинтетической электронтранспортной цепи — белком флаводоксином и мембранным комплексом фотосистемы 1. Моделируется броуновское движение нескольких сотен молекул флаводоксина, учитываются электростатические взаимодействия и сложная форма молекул. С помощью данной модели удалось воспроизвести экспериментальную немонотонную зависимость константы связывания флаводоксина с фотосистемой 1. Это говорит о том, что для описания такого вида зависимости достаточно учета только электростатических взаимодействий.

    Abaturova A.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B.
    Investigation of complex formation of flavodoxin and photosystem 1 by means of direct multiparticle computer simulation
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 85-91

    Kinetics of complex formation between components of the photosynthetic electron transport chain — flavodoxin and membrane complex photosystem I has been studied using computer model based on methods of multiparticle simulation and Brownian dynamics. We simulated Brownian motion of several hundreds of flavodoxin molecules, taking into account electrostatic interactions and complex shape of the molecules. Our model could describe experimental nonmonotonic dependence of the association rate constant for flavodoxin and photosystem I. This lets us conclude that electrostatic interactions are sufficient to form such kind of nonmonotonic dependence.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  3. Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.

    В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.

    Maslakov A.S.
    Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221

    Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.

    When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.

  4. Плюснина Т.Ю., Воронова Е.Н., Гольцев В.Н., Погосян С.И., Яковлева О.В., Ризниченко Г.Ю., Рубин А.Б.
    Редуцированная модель фотосистемы II для оценки характеристик фотосинтетического аппарата по данным индукции флуоресценции
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 943-958

    Рассматривается подход для анализа некоторых биологических систем большой размерности, для которых справедливы предположения о квазиравновесных стадиях. Подход позволяет редуцировать детальные модели большой размерности и получить упрощенные модели, имеющие аналитическое решение. Это дает возможность достаточно точно воспроизводить экспериментальные кривые. Рассматриваемый подход был применен к детальной модели первичных процессов фотосинтеза в реакционном центре фотосистемы II. Упрощенная модель фотосистемы II хорошо описывает экспериментальных кривые индукции флуоресценции для высших и низших растений, полученные при разных интенсивностях света. Выведенные соотношения между переменными и параметрами детальной и упрощенной моделей, позволили использовать полученные оценки параметров упрощенной модели для описания динамики различных состояний фотосистемы II детальной модели.

    Plusnina T.Yu., Voronova E.N., Goltzev V.N., Pogosyan S.I., Yakovleva O.V., Riznichenko G.Yu., Rubin A.B.
    Reduced model of photosystem II and its use to evaluate the photosynthetic apparatus characteristics according to the fluorescence induction curves
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 943-958

    The approach for the analysis of some large-scale biological systems, on the base of quasiequilibrium stages is proposed. The approach allows us to reduce the detailed large-scaled models and obtain the simplified model with an analytical solution. This makes it possible to reproduce the experimental curves with a good accuracy. This approach has been applied to a detailed model of the primary processes of photosynthesis in the reaction center of photosystem II. The resulting simplified model of photosystem II describes the experimental fluorescence induction curves for higher and lower plants, obtained under different light intensities. Derived relationships between variables and parameters of detailed and simplified models, allow us to use parameters of simplified model to describe the dynamics of various states of photosystem II detailed model.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.