Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное исследование устойчивости пространственнопериодических вихревых структур изотермической электроконвекции жидких диэлектриков в плоскопараллельной системе электродов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 91-98Исследуется устойчивость пространственно-периодических диссипативных структур изотермической электроконвекции в плоском слое вязкой несжимаемой слабопроводящей жидкости с униполярной инжекционной проводимостью.
Numerical investigation of spatially periodic rolls structures of liquid dielectrics isothermal electro–convection in a plane–parallel electrode system
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 91-98Просмотров за год: 1. Цитирований: 1 (РИНЦ).Isothermal electroconvection in a dielectric liquid arising in a plane-parallel electrode system due to unipolar injection of charges from the cathode is considered. Spatially periodic rolls structures stability is investigated.
-
Распространение волн Рэлея при косом ударе метеорита о поверхность земли и их воздействие на здания и сооружения
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 981-992В данной работе решается динамическая задача теории упругости о совместном нормальном и касательном воздействии на полупространство. С помощью этой задачи моделируется процесс наклонного падения метеорита на земную поверхность. Проведены исследования и расчеты поверхностной волны Рэлея. Полученное решение использовано в качестве внешнего воздействия на высотное здание, находящееся на некотором расстоянии от места падения для оценки безопасности и устойчивости его конструкции. Проведены численные эксперименты на основе конечно-элементного программного комплекса STARK ES. Рассчитаны амплитуды колебаний верхних этажей выбранного объекта при таком динамическом воздействии. Также проведено ихсистема тическое сравнение с результатами расчета при колебаниях основания, соответствующихст андартной акселерограмме 8-балльного землетрясения.
Propagation of Rayleigh waves at oblique impact of the meteorite about the earth’s surface and their effects on buildings and structures
Computer Research and Modeling, 2013, v. 5, no. 6, pp. 981-992Просмотров за год: 3. Цитирований: 2 (РИНЦ).In this paper the dynamic elasticity problem of the simultaneous normal and tangential impact on the half-space is solved. This problem simulates the oblique incidence of meteorite on the Earth’s surface. The surface Rayleigh wave is investigated. The resulting solution is used as an external effect on the high-rise building, located at some distance from the spot of falling for the safety and stability assessment of its structure. Numerical experiments were made based on the finite element software package STARK ES. Upper floors amplitudes of the selected object were calculated under such dynamic effects. Also a systematic comparison with the results at the foundation vibrations, relevant to standard a 8-point earthquake accelerograms, was made.
-
Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.
Repressilator with time-delayed gene expression. Part I. Deterministic description
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259Просмотров за год: 30.The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.
-
Моделирование цитокинового шторма при респираторных вирусных инфекциях
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 619-645В данной работе мы разрабатываем модель иммунного ответа на респираторные вирусные инфекции с учетом некоторых особенностей инфекции SARS-CoV-2. Модель представляет из себя систему обыкновенных дифференциальных уравнений для концентраций эпителиальных клеток, иммунных клеток, вируса и воспалительных цитокинов. Анализ существования и устойчивости стационарных точек дополняется численным моделированием с целью изучения динамики решений. Поведение решений характеризуется большим ростом концентрации вируса, наблюдаемым для острых респираторных вирусных инфекций.
На первом этапе мы изучаем врожденный иммунный ответ, основанный на защитных свойствах интерферона, производимого инфицированными вирусом клетками. С другой стороны, вирусная инфекция подавляет выработку интерферона. Их конкуренция может привести к бистабильности системы с разными режимами развития инфекции с высокой или низкой интенсивностью. В случае острого протекания заболевания и существенного роста концентрации вируса инкубационный период и максимальная вирусная нагрузка зависят от исходной вирусной нагрузки и параметров иммунного ответа. В частности, увеличение исходной вирусной нагрузки приводит к сокращению инкубационного периода и увеличению максимальной вирусной нагрузки.
Для изучения возникновения и динамики цитокинового шторма в модель вводится уравнение для концентрации провоспалительных цитокинов, производимых клетками врожденного иммунного ответа. В зависимости от параметров система может оставаться в режиме с относительно низким уровнем провосполительных цитокинов, наблюдаемым для обычного протекания вирусных инфекций, или за счет положительной обратной связи между воспалением и иммунными клетками перейти в режим цитокинового шторма, характеризующегося избыточным производством провоспалительных цитокинов. При этом цитокиновый шторм, вызванный вирусной инфекцией, может продолжаться и после ее окончания. Кроме того, гибель клеток, инициируемая провосполительными цитокинами (апоптоз), может стимулировать переход к цитокиновому шторму. Однако апоптоз в отдельности от врожденного иммунного ответа не может инициировать или поддерживать протекание цитокинового шторма. Предположения модели и полученные результаты находятся в качественном согласии с экпериментальными и клиническими данными.
Modelling of cytokine storm in respiratory viral infections
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.
At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.
In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.
-
Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 773-787Методами численного моделирования проведено исследование процессов взаимодействия осциллирующего солитона (бризера) с 180-градусной доменной стенкой нееловского типа в рамках (2 + 1)-мерной суперсимметричной О(3) нелинейной сигма-модели. Целью настоящей работы является исследование нелинейной эволюции и устойчивости системы взаимодействующих локализованных динамических и топологических решений. Для построения моделей взаимодействия были использованы стационарные бризерные решения и решения в виде доменных стенок, полученные в рамках двумерного уравнения синус-Гордона добавлением специально подобранных возмущений вектору А3-поля в изотопическом пространстве блоховской сферы. При отсутствии внешнего магнитного поля нелинейные сигма-модели обладают формальной лоренц-инвариантностью, которая позволяет построить, в частности, движущиеся решения и провести полный анализ экспериментальных данных нелинейной динамики системы взаимодействующих солитонов. В настоящей работе на основе полученных движущихся локализованных решений построены модели налетающих и лобовых столкновений бризеров с доменной стенкой, где, в зависимости от динамических параметров системы, наблюдаются процессы столкновения и отражения солитонов друг от друга, дальнодействующие взаимодействия, а также распад осциллирующего солитона на линейные волны возмущений. В отличие от бризерного решения, обладающего динамикой внутренней степени свободы, интеграл энергии топологически устойчивого солитона во всех проведенных экспериментах сохраняется с высокой точностью. Для каждого типа взаимодействия определен интервал значений скорости движения сталкивающихся динамических и топологических солитонов в зависимости от частоты вращения вектора А3-поля в изотопическом пространстве. Численные модели построены на основе методов теории конечных разностных схем, использованием свойств стереографической проекции, с учетом теоретико-групповых особенностей конструкций класса O(N) нелинейных сигма-моделей теории поля. По периметру двумерной области моделирования установлены специально разработанные граничные условия, которые поглощают линейные волны возмущений, излучаемые взаимодействующими солитонными полями. Таким образом, осуществлено моделирование процессов взаимодействия локализованных решений в бесконечном двумерном фазовом пространстве. Разработан программный модуль, позволяющий провести комплексный анализ эволюции взаимодействующих решений нелинейных сигма-моделей теории поля, с учетом ее групповых особенностей в двумерном псевдоевклидовом пространстве. Проведен анализ изоспиновой динамики, а также плотности и интеграла энергии системы взаимодействующих динамических и топологических солитонов.
Ключевые слова: динамика взаимодействия, двумерный бризер, доменная стенка, нелинейная сигма-модель, уравнение синус-Гордона, численное моделирование, изотопическое пространство.
Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787Просмотров за год: 6.By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.
-
Репрессилятор с запаздывающей экспрессией генов. Часть II. Стохастическое описание
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 587-609Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую малоразмерную цепь из трех генов: $lacI$, $\lambda cI$ и $tetR$, которые в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. Ранее в работе [Брацун и др., 2018] была предложена математическая модель запаздывающего репрессилятора и изучены ее свойства в рамках детерминистского описания. Предполагается, что запаздывание может быть как естественным, т. е. возникать во время процессов транскрипции/трансляции в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов генной инженерии. Данная работа посвящена стохастическому описанию динамических процессов в запаздывающем репрессиляторе, которое является важным дополнением детерминистского анализа из-за сильных флуктуаций и небольшого числа молекул, принимающих обычно участие в генной регуляции. Стохастическое исследование было проведено численно с помощью алгоритма Гиллеспи, модифицированного для систем с запаздыванием. Приводятся описание алгоритма, его программная реализация и результаты тестовых расчетов для одногенного авторепрессора с запаздыванием. При исследовании репрессилятора обнаружено, что стохастическое описание в ряде случаев дает новую информацию о поведении системы, которая не сводится к детерминистской динамике даже при усреднении по большому числу реализаций. В подкритической области, где детерминистский анализ предсказывает абсолютную устойчивость системы, было обнаружено возбуждение квазирегулярных колебаний, вызываемых нелинейным взаимодействием шума и запаздывания. Выше порога возникновения неустойчивости обнаружено спонтанное изменение фазы колебаний из-за внезапной временной деградации этих колебаний. Ранее в детерминистском анализе был обнаружен долгоживущий переходный режим, который отвечает движению фазовой траектории по медленному многообразию и отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Показано, что в стохастическом случае переход к кооперативному режиму работы генов репрессилятора происходит в среднем на два порядка быстрее. Построено распределение вероятности соскока фазовой траектории с медленного многообразия и определено наиболее вероятное время такого перехода. Обсуждается влияние внутреннего шума химических реакций на динамические свойства репрессилятора.
Repressilator with time-delayed gene expression. Part II. Stochastic description
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 587-609The repressilator is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements $lacI$, $\lambda cI$ and $tetR$, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In our previous paper [Bratsun et al., 2018], we proposed a mathematical model of a delayed repressillator and studied its properties within the framework of a deterministic description. We assume that delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using gene engineering technologies. In this work, we apply the stochastic description of dynamic processes in a delayed repressilator, which is an important addition to deterministic analysis due to the small number of molecules involved in gene regulation. The stochastic study is carried out numerically using the Gillespie algorithm, which is modified for time delay systems. We present the description of the algorithm, its software implementation, and the results of benchmark simulations for a onegene delayed autorepressor. When studying the behavior of a repressilator, we show that a stochastic description in a number of cases gives new information about the behavior of a system, which does not reduce to deterministic dynamics even when averaged over a large number of realizations. We show that in the subcritical range of parameters, where deterministic analysis predicts the absolute stability of the system, quasi-regular oscillations may be excited due to the nonlinear interaction of noise and delay. Earlier, we have discovered within the framework of the deterministic description, that there exists a long-lived transient regime, which is represented in the phase space by a slow manifold. This mode reflects the process of long-term synchronization of protein pulsations in the work of the repressilator genes. In this work, we show that the transition to the cooperative mode of gene operation occurs a two order of magnitude faster, when the effect of the intrinsic noise is taken into account. We have obtained the probability distribution of moment when the phase trajectory leaves the slow manifold and have determined the most probable time for such a transition. The influence of the intrinsic noise of chemical reactions on the dynamic properties of the repressilator is discussed.
-
Численное исследование механизмов распространения пульсирующей газовой детонации в неоднородной среде
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1263-1282В последние несколько лет наблюдаются значительные успехи в области создания двигательных установок для летательных аппаратов, основанных на сжигании топлива во вращающейся детонационной волне. В научных лабораторияхпо всему миру проводятся как фундаментальные исследования, связанные, например, с вопросами смесеобразования при раздельной подаче топлива и окислителя, так и прикладные по доводке уже существующих прототипов. В работе приводится краткий обзор основных результатов наиболее значимых недавних расчетных работ по изучению распространения одномерной пульсирующей волны газовой детонации в среде с неравномерным распределением параметров. Отмечаются общие тенденции, которые наблюдали авторы данных работ. В этих работах показано, что наличие возмущений параметров перед фронтом волны может приводить к регуляризации и к резонансному усилению пульсаций параметров за ее фронтом. В результате возникает привлекательная с практической точки зрения возможность влиять на устойчивость детонационной волны и управлять ею. Настоящая работа направлена на создание инструмента, который позволяет изучать газодинамические механизмы данных эффектов.
Математическая модель основана на одномерных уравнениях Эйлера, дополненных одностадийной моделью кинетики химических реакций. Определяющая система уравнений записана в системе координат, связанной с лидирующим скачком, что приводит к необходимости добавить уравнение для скорости лидирующей волны. Предложен способ интегрирования данного уравнения, учитывающий изменение плотности среды перед фронтом волны. Таким образом, предложен вычислительный алгоритм для моделирования распространения детонации в неоднородной среде.
С использованием разработанного алгоритма проведено численное исследование распространения устойчивой детонации в среде с переменной плотностью. Исследован режим с относительно небольшой амплитудой колебаний плотности, при котором колебания параметров за фронтом детонационной волны происходят с частотой колебаний плотности среды. Показана связь периода колебаний параметров со временем прохождения характеристик C+ и C0 по области, которую условно можно считать зоной индукции. Сдвиг по фазе между колебаниями скорости детонационной волны и плотности газа перед волной оценен как максимальное время прохождения характеристики C+ по зоне индукции.
Ключевые слова: математическое моделирование, детонационная волна, уравнения Эйлера, одностадийная химическая кинетика, пульсации, неоднородная среда.
Numerical study of the mechanisms of propagation of pulsating gaseous detonation in a non-uniform medium
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1263-1282In the last few years, significant progress has been observed in the field of rotating detonation engines for aircrafts. Scientific laboratories around the world conduct both fundamental researches related, for example, to the issues of effective mixing of fuel and oxidizer with the separate supply, and applied development of existing prototypes. The paper provides a brief overview of the main results of the most significant recent computational work on the study of propagation of a onedimensional pulsating gaseous detonation wave in a non-uniform medium. The general trends observed by the authors of these works are noted. In these works, it is shown that the presence of parameter perturbations in front of the wave front can lead to regularization and to resonant amplification of pulsations behind the detonation wave front. Thus, there is an appealing opportunity from a practical point of view to influence the stability of the detonation wave and control it. The aim of the present work is to create an instrument to study the gas-dynamic mechanisms of these effects.
The mathematical model is based on one-dimensional Euler equations supplemented by a one-stage model of the kinetics of chemical reactions. The defining system of equations is written in the shock-attached frame that leads to the need to add a shock-change equations. A method for integrating this equation is proposed, taking into account the change in the density of the medium in front of the wave front. So, the numerical algorithm for the simulation of detonation wave propagation in a non-uniform medium is proposed.
Using the developed algorithm, a numerical study of the propagation of stable detonation in a medium with variable density as carried out. A mode with a relatively small oscillation amplitude is investigated, in which the fluctuations of the parameters behind the detonation wave front occur with the frequency of fluctuations in the density of the medium. It is shown the relationship of the oscillation period with the passage time of the characteristics C+ and C0 over the region, which can be conditionally considered an induction zone. The phase shift between the oscillations of the velocity of the detonation wave and the density of the gas before the wave is estimated as the maximum time of passage of the characteristic C+ through the induction zone.
-
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
Ключевые слова: демографическая динамика, динамика человеческого капитала, математическое моделирование, уравнения переноса, разностная схема, составляющие человеческого капитала, инвестиции в человеческий капитал.
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Просмотров за год: 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Численное моделирование двумерных магнитных скирмионных структур
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1051-1061В данной работе с помощью алгоритма Метрополиса авторами были изучены магнитные системы, в которых из-за конкуренции между прямым гейзенберговским обменом и взаимодействием Дзялошинского–Мория возникают магнитные вихревые структуры — скирмионы.
В статье рассматриваются условия зарождения и стабильного существования магнитных скирмионов в двумерных магнитных пленках в рамках классической модели Гейзенберга. Изучена термическая стабильность скирмионов в магнитной пленке. Были рассмотрены процессы формирования различных состояний в изучаемой системе при варьировании величины внешнего магнитного поля, выделены различные фазы, в которые переходит система спинов Гейзенберга. Было выделено семь фаз: парамагнитная, спиральная, лабиринтная, спираль-скирмионная, скирмионная, скирмион-ферромагнитная и ферромагнитная фазы, подробный анализ конфигураций которых приводится в статье.
Построены две фазовые диаграммы: на первой показано поведение системы при постоянном $D$ в зависимости от величин внешнего магнитного поля и температуры: $(T, B)$, на второй — изменение кон- фигураций системы при постоянной температуре $T$ в зависимости от величины взаимодействия Дзялошинского–Мории и внешнего магнитного поля: $(D, B)$.
Полученные в ходе численных экспериментов данные будут использованы в дальнейших исследованиях при определении модельных параметров системы для формирования стабильного скирмионного состояния и разработки методов контроля скирмионов в магнитной пленке.
Ключевые слова: магнитный скирмион, модель Гейзенберга, алгоритм Метрополиса, фазовая диаграмма, высокопроизводительные вычисления.
Numerical simulation of two-dimensional magnetic skyrmion structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.
The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.
Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.
The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
Ключевые слова: социальнаяна пряженность, модель сплошной социальной стратификации, уравнение нелинейной диффузии, метод конечных объемов.
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"