Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Расчет сигнала и шума при анализе райсовских данных путем комбинирования метода максимума правдоподобия и метода моментов
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 511-523В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях распределения Райса, основанный на комбинировании метода максимума правдоподобия и метода моментов. При этом определение искомых параметров задачи осуществляется посредством обработки выборочных измерений амплитуды анализируемого райсовского сигнала. Получена система уравнений для искомых параметров сигнала и шума, а также представлены результаты численных расчетов, подтверждающие эффективность предлагаемого метода. Показано, что решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи. В частном случае малой величины отношения сигнала к шуму получено аналитическое решение задачи. В работе проведено исследование зависимости погрешности и разброса расчетных данных для искомых параметров от количества измерений в экспериментальной выборке. Как показали численные эксперименты, величина разброса расчетных значений искомых параметров сигнала и шума, полученных предлагаемым методом, изменяется обратно пропорционально количеству измерений в выборке. Проведено сопоставление точности оценивания искомых райсовских параметров предлагаемым методом и ранее развитым вариантом метода моментов. Решаемая в работе задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации, а также при решении многих других научных и прикладных задач, адекватно описываемых статистической моделью Райса.
Ключевые слова: функция плотности вероятности, распределение Райса, метод максимума правдоподобия, метод моментов, выборки измерений, отношение сигнала к шуму.
Signal and noise calculation at Rician data analysis by means of combining maximum likelihood technique and method of moments
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 511-523Просмотров за год: 11.The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.
-
Борьба с экономической коррупцией при распределении ресурсов
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 173-185В теоретико-игровой постановке рассмотрена модель борьбы с коррупцией при распределении ресурсов. Система распределения ресурсов включает в свой состав одного принципала (субъект управления верхнего уровня), одного или нескольких супервайзеров (субъектов среднего уровня) и нескольких агентов (субъекты нижнего уровня). Отношения между субъектами разных уровней строятся на основе иерархии: субъект верхнего уровня воздействует (управляет) на субъектов среднего уровня, а те, в свою очередь, на субъектов нижнего уровня. Предполагается, что коррупции подвержен средний уровень управления. Агенты предлагают супервайзеру взятки, в обмен на которые он предоставляет им дополнительные доли ресурса. Предположим также, что принципал не подвержен коррупции и является бескорыстным, не преследующим частных целей. Исследование модели проведено с точки зрения как супервайзера, так и агентов. C точки зрения агентов, возникает некооперативная игра, в которой находится равновесие Нэша. При этом задачи оптимального управления для частного вида входных функций решаются аналитически с помощью принципа максимума Понтрягина. C точки зрения супервайзера, возникает игра, которая ведется в соответствии с регламентом игры Гермейера Г2t. Указан алгоритм построения равновесия. Стратегия наказания находится аналитически. Стратегия поощрения в случае входных функций общего вида находится численно. Строится дискретный аналог непрерывной модели. Предполагается, что все субъекты управления могут изменять свои стратегии поведения в одни и те же моменты времени конечное число раз. В результате от задачи максимизации своего целевого функционала супервайзер переходит к задаче максимизации целевой функции многих переменных. Для нахождения ее наибольшего значения используется метод качественно репрезентативных сценариев. Идея этого метода состоит в том, что из множества потенциально возможных сценариев управления выбираются только сценарии, позволяющие представить качественно различные пути развития системы. В результате мощность этого множества не слишком велика и удается осуществить полный перебор качественно репрезентативных сценариев и найти стратегию поощрения агентов. После ее нахождения супервайзер предлагает агентам механизм управления с обратной связью по управлению, состоящий в наказании агентов при отклонении от выбранной супервайзером стратегии и поощрении в противном случае.
Ключевые слова: равновесие Нэша, равновесие Штакельберга, коррупция, игры Гермейера, супервайзер, принципал, агент, принцип максимума Понтрягина.
Struggle against economic corruption in resource allocation
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185Просмотров за год: 33. Цитирований: 1 (РИНЦ).A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.
-
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
Ключевые слова: демографическая динамика, динамика человеческого капитала, математическое моделирование, уравнения переноса, разностная схема, составляющие человеческого капитала, инвестиции в человеческий капитал.
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Просмотров за год: 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Математическое моделирование тенсегрити-роботов с жесткими стержнями
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 821-830В работе рассматривается вопрос математического моделирования робототехнических структур на основе напряженно-связных конструкций, известных в англоязычных источниках как tensegrity structures (тенсегрити-структуры). Определяющим свойством таких конструкций является то, что образующие их элементы работают только на сжатие или растяжение, что позволяет использовать материалы и конструктивные решения для выполнения этих элементов, минимизирующие вес структуры, сохраняя ее прочность.
Тенсегрити-структуры отличаются рядом свойств, важных для коллаборативной робототехники, задач разведывания и движения в недетерминированных средах: естественной податливостью, компактностью при транспортировке, малым весом при значительной удароустойчивости и жесткости. При этом открытыми остаются многие вопросы управления такими структурами, что в свою очередь связано со сложностью описания их динамики.
В работе предложен подход к описанию и составлению динамических уравнений для таких конструкций, основанный на описании динамики второго порядка декартовых координат элементов структуры (стержней), динамики первого порядка для угловых скоростей стержней и динамики первого порядка для кватернионов, используемых для описания ориентации стержней. Предложен подход к численному решению составленных динамических уравнений. Предложенные методы реализованы в виде свободно распространяемого математического пакета с открытым исходным кодом.
В работе продемонстрировано, как разработанный программный комплекс может использоваться для моделирования динамики и определения режимов работы тенсегрити-структур. Рассмотрен пример тенсегрити-структуры с тремя жесткими стержнями и девятью упругими элементами, работающими на растяжение (тросами), движущейся в невесомости. Показаны особенности динамики структуры в процессе достижения положения равновесия, определены области начальных значений параметров ориентации стержней, при которых структура работает в штатном режиме, и значения, при которых растяжение тросов превышает выбранное критическое значение или происходит провисание тросов. Полученные результаты могут непосредственно использоваться при анализе характера пассивных динамических движений роботов, основанных на трехзвенной тенсегрити-структуре, рассмотренный в работе; предложенные методы моделирования и разработанное программное обеспечение пригодны для моделирования значительного многообразия тенсегрити-роботов.
Mathematical modelling of tensegrity robots with rigid rods
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 821-830In this paper, we address the mathematical modeling of robots based on tensegrity structures. The pivotal property of such structures is the forming elements working only for compression or tension, which allows the use of materials and structural solutions that minimize the weight of the structure while maintaining its strength.
Tensegrity structures hold several properties important for collaborative robotics, exploration and motion tasks in non-deterministic environments: natural compliance, compactness for transportation, low weight with significant impact resistance and rigidity. The control of such structures remains an open research problem, which is associated with the complexity of describing the dynamics of such structures.
We formulate an approach for describing the dynamics of such structures, based on second-order dynamics of the Cartesian coordinates of structure elements (rods), first-order dynamics for angular velocities of rods, and first-order dynamics for quaternions that are used to describe the orientation of rods. We propose a numerical method for solving these dynamic equations. The proposed methods are implemented in the form of a freely distributed mathematical package with open source code.
Further, we show how the provided software package can be used for modeling the dynamics and determining the operating modes of tensegrity structures. We present an example of a tensegrity structure moving in zero gravity with three rigid rods and nine elastic elements working in tension (cables), showing the features of the dynamics of the structure in reaching the equilibrium position. The range of initial conditions for which the structure operates in the normal mode is determined. The results can be directly used to analyze the nature of passive dynamic movements of the robots based on a three-link tensegrity structure, considered in the paper; the proposed modeling methods and the developed software are suitable for modeling a significant variety of tensegrity robots.
-
Численное моделирование двумерных магнитных скирмионных структур
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1051-1061В данной работе с помощью алгоритма Метрополиса авторами были изучены магнитные системы, в которых из-за конкуренции между прямым гейзенберговским обменом и взаимодействием Дзялошинского–Мория возникают магнитные вихревые структуры — скирмионы.
В статье рассматриваются условия зарождения и стабильного существования магнитных скирмионов в двумерных магнитных пленках в рамках классической модели Гейзенберга. Изучена термическая стабильность скирмионов в магнитной пленке. Были рассмотрены процессы формирования различных состояний в изучаемой системе при варьировании величины внешнего магнитного поля, выделены различные фазы, в которые переходит система спинов Гейзенберга. Было выделено семь фаз: парамагнитная, спиральная, лабиринтная, спираль-скирмионная, скирмионная, скирмион-ферромагнитная и ферромагнитная фазы, подробный анализ конфигураций которых приводится в статье.
Построены две фазовые диаграммы: на первой показано поведение системы при постоянном $D$ в зависимости от величин внешнего магнитного поля и температуры: $(T, B)$, на второй — изменение кон- фигураций системы при постоянной температуре $T$ в зависимости от величины взаимодействия Дзялошинского–Мории и внешнего магнитного поля: $(D, B)$.
Полученные в ходе численных экспериментов данные будут использованы в дальнейших исследованиях при определении модельных параметров системы для формирования стабильного скирмионного состояния и разработки методов контроля скирмионов в магнитной пленке.
Ключевые слова: магнитный скирмион, модель Гейзенберга, алгоритм Метрополиса, фазовая диаграмма, высокопроизводительные вычисления.
Numerical simulation of two-dimensional magnetic skyrmion structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.
The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.
Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.
The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.
-
Моделирование инициации молнии на базе динамического графа
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 125-147Несмотря на многочисленные достижения современной науки, до сих пор остается нераскрытой проблема зарождения молниевого разряда в безэлектродном грозовом облаке, максимальная напряженность электрического поля в котором примерно на порядок меньше диэлектрической прочности воздуха. Хотя не вызывает сомнений тот факт, что развитие разряда начинается с появления в облаке положительных стримеров, развитие которых становится возможным при примерно вдвое меньших значениях электрического поля по сравнению с отрицательными, на настоящий момент остается неизученным вопрос о том, каким образом холодные слабопроводящие стримерные системы объединяются в горячий хорошо проводящий лидерный канал, способный к самостоятельному распространению за счет эффективной поляризации в относительно слабом внешнем поле. В данной работе представлена самоорганизующаяся транспортная модель, реализованная на примере формирования фрактального древа электрического разряда в грозовом облаке и направленная на численное моделирование процесса начальной стадии развития молниевого разряда. Среди инновационных особенностей нашего подхода, отсутствующих в других численных моделях развития молнии, можно выделитьот сутствие привязки элементов проводящей структуры графа к узлам пространственной решетки, высокое пространственно-временное разрешение и учет временной эволюции электрических параметров транспортных каналов. Кроме того, модельучи тывает известную из многочисленных экспериментов асимметрию полей развития положительных и отрицательных стримеров. В рамках используемого подхода результирующий хорошо проводящий лидерный канал формируется за счет коллективного эффекта объединения токов десятков тысяч взаимодействующих между собой стримеров, каждый из которых изначально обладает пренебрежимо малой проводимостью и температурой, не отличающейся от температуры окружающей среды. Модельное биполярное древо представляет собой направленный граф (имеет положительную и отрицательную части) и имеет морфологические и электро-динамические характеристики, промежуточные между лабораторной длинной искрой и развитой молнией. Модель имеет универсальный характер, что при необходимости позволяет использовать ее в рамках других задач, связанных с исследованием транспортных (в широком смысле слова) сетей.
Ключевые слова: коллективная динамика, дискретная транспортная модель, прикладная теория графов, фракталы, электрический разряд, молния.
Simulation of lightning initiation on the basis of dynamical grap
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.
-
Применение модели кинетического типа для изучения пространственного распространения COVID-19
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.
Application of the kinetic type model for study of a spatial spread of COVID-19
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.
-
Методика имитационного моделирования на основе обучающих данных для двухфазного течения в гетерогенной пористой среде
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 779-792Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.
Ключевые слова: имитационное моделирование, нейросетевые модели физических процессов, суррогатное моделирование, гидродинамика, пористая среда, сверточные нейронные сети, состязательное обучение.
Data-driven simulation of a two-phase flow in heterogenous porous media
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.
-
Численная модель переноса в задачах неустойчивостей низкоширотной ионосферы Земли с использованием двумерной монотонизированной Z-схемы
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1011-1023Целью работы является исследование монотонной конечно-разностной схемы второго порядка точности, созданной на основе обобщения одномерной Z-схемы. Исследование проведено для модельных уравнений переноса несжимаемой среды. В работе описано двумерное обобщение Z-схемы с нелинейной коррекцией, использующей вместо потоков косые разности, содержащие значения из разных временных слоев. Численно проверена монотонность полученной нелинейной схемы для функций-ограничителей двух видов, как для гладких решений, так и для негладких, и получены численные оценки порядка точности построенной схемы. Построенная схема является абсолютно устойчивой, но теряет свойство монотонности при превышении шага Куранта. Отличительной особенностью предложенной конечно-разностной схемы является минимальность ее шаблона.
Построенная численная схема предназначена для моделей плазменных неустойчивостей различных масштабов в низкоширотной ионосферной плазме Земли. Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере в условиях возникновения неустойчивости Рэлея – Тейлора и плазменных структур с меньшими масштабами, механизмами генерации которых являются неустойчивости других типов, что приводит к явлению F-рассеяния. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направле- нии предполагается выполнение условия несжимаемости плазмы.
Ключевые слова: нелинейная конечно-разностная схема, Z-схема, математическое моделирование, численное моделирование, уравнение переноса, ионосфера, неустойчивость Рэлея – Тейлора, несжимаемая плазма, неустойчивость плазмы.
Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.
The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
Ключевые слова: социальнаяна пряженность, модель сплошной социальной стратификации, уравнение нелинейной диффузии, метод конечных объемов.
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"