Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'new form of the equations':
Найдено статей: 30
  1. Попов В.С., Попова А.А.
    Моделирование взаимодействия стенки канала с упругозакрепленным торцевым уплотнением
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 387-400

    В работе предложена новая математическая модель для исследования динамики взаимодействия продольной стенки узкого канала с его торцевым уплотнением — торцевой стенкой, имеющей упругое закрепление. В рамках данной модели взаимодействие указанных стенок происходит через слой вязкой жидкости, заполняющей канал, и ранее не исследовалось. Это потребовало постановки и решения задачи гидроупругости. Поставленная задача состоит из уравнений Навье–Стокса, уравнения неразрывности, уравнения динамики торцевой стенки как одномассовой модели и соответствующих краевых условий. На первом этапе задача исследована при ползучем течении. На втором этапе исследования данное ограничение снимается и, при использовании метода итераций, осуществлено обобщение исходной задачи с учетом инерции движения жидкости. Решение сформулированной задачи позволило определить законы распределения скоростей и давления в слое жидкости, а также закон движения торцевой стенки. Показано, что при ползучем течении физические свойства слоя жидкости и геометрические размеры канала полностью определяют демпфирование в рассматриваемой колебательной системе. При этом на демпфирующие свойства слоя жидкости оказывает влияние как скорость движения торцевой стенки, так и скорость движения продольной стенки. Найдены выражения для коэффициентов демпфирования слоя жидкости в продольном и поперечном направлении. При учете сил инерции жидкости выявлено их влияние на колебания торцевой стенки, проявляющиеся в виде двух присоединенных масс в уравнении ее движения. Определены выражения для указанных присоединенных масс. Для режима установившихся гармонических колебаний построены амплитудно-частотные и фазово-частотные характеристики торцевой стенки, учитывающие демпфирующие и инерционные свойства слоя вязкой жидкости в канале. Моделирование показало, что совместный учет инерции движения слоя жидкости в канале и его демпфирующих свойств приводит к сдвигу резонансных частот колебаний в низкочастотную область и возрастанию амплитуд колебаний торцевой стенки.

    Popov V.S., Popova A.A.
    Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400

    The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.

  2. Сорокин К.Э., Аксёнов А.А., Жлуктов С.В., Бабулин А.А., Шевяков В.И.
    Методика расчета обледенения воздушных судов в широком диапазоне климатических и скоростных параметров. Применение в рамках норм летной годности НЛГ-25
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 957-978

    Сертификация самолетов транспортной категории для эксплуатации в условияхо бледенения в России ранее проводилась в рамках требований приложения С к «Авиационным правилам» (АП-25). Во введенном в действие с 2023 года, взамен АП-25, документе «Нормы летной годности» (НЛГ-25) добавлено и приложение О. Отличительной особенностью приложения О является необходимость проведения расчетов в условиях большой водности и с крупными каплями воды (500 мкм и более). При таких параметрах дисперсного потока определяющими становятся такие физические процессы, как срыв и разбрызгивание пленки воды при попадании в нее крупных капель. Поток дисперсной среды в такиху словиях является существенно полидисперсным. В данной работе описываются модификации методики расчета обледенения самолетов IceVision, реализованной на базе программного комплекса FlowVision, необходимые для проведения расчетов обледенения самолетов в рамках приложения О.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume of fluid (VOF — объем жидкости в ячейке) для отслеживания изменения формы льда. Внешнее обтекание самолета рассчитывается одновременно с нарастанием льда и его прогревом. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В отличие от лагранжевых подходов, в IceVision эйлерова расчетная сетка не перестраивается полностью. Изменение объема льда сопровождается только модификацией ячеек сетки, через которые проходит контактная поверхность.

    В версии IceVision 2.0 реализован учет срыва водяной пленки, а также отскока и разбрызгивания падающих капель на поверхности самолета и льда. Диаметр вторичных капель рассчитывается с использованием известных эмпирических корреляций. Скорость течения пленки воды по поверхности определяется с учетом действия аэродинамических сил, силы тяжести, градиента гидростатического давления и силы поверхностного натяжения. Результатом учета поверхностного натяжения является эффект поперечного стягивания пленки, приводящий к образованию потоков воды в форме ручейков и ледяных отложений в виде гребнеобразных наростов. На поверхности льда выполняется балансовое соотношение, учитывающее энергию падающих капель, теплообмен между льдом и воздухом, теплоту кристаллизации, испарения, сублимации и конденсации. В работе приводятся результаты решения тестовых и модельных расчетных задач, демонстрирующие эффективность методики IceVision и достоверность полученных результатов.

    Sorokin K.E., Aksenov A.A., Zhluktov S.V., Babulin A.A., Shevyakov V.I.
    Methodology of aircraft icing calculation in a wide range of climate and speed parameters. Applicability within the NLG-25 airworthiness standards
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 957-978

    Certifying a transport airplane for the flights under icing conditions in Russia was carried out within the framework of the requirements of Annex С to the AP-25 Aviation Rules. In force since 2023 to replace AP-25 the new Russian certification document “Airworthiness Standards” (NLG-25) proposes the introduction of Appendix O. A feature of Appendix O is the need to carry out calculations in conditions of high liquid water content and with large water drops (500 microns or more). With such parameters of the dispersed flow, such physical processes as the disruption and splashing of a water film when large drops enter it become decisive. The flow of a dispersed medium under such conditions is essentially polydisperse. This paper describes the modifications of the IceVision technique implemented on the basis of the FlowVision software package for the ice accretion calculations within the framework of Appendix O.

    The main difference between the IceVision method and the known approaches is the use of the Volume of fluid (VOF) technology to the shape of ice changes tracking. The external flow around the aircraft is calculated simultaneously with the growth of ice and its heating. Ice is explicitly incorporated in the computational domain; the heat transfer equation is solved in it. Unlike the Lagrangian approaches, the Euler computational grid is not completely rebuilt in the IceVision technique: only the cells containing the contact surface are changed.

    The IceVision 2.0 version accounts for stripping the film, as well as bouncing and splashing of falling drops at the surfaces of the aircraft and ice. The diameter of secondary droplets is calculated using known empirical correlations. The speed of the water film flow over the surface is determined taking into account the action of aerodynamic forces, gravity, hydrostatic pressure gradient and surface tension force. The result of taking into account surface tension is the effect of contraction of the film, which leads to the formation of water flows in the form of rivulets and ice deposits in the form of comb-like growths. An energy balance relation is fulfilled on the ice surface that takes into account the energy of falling drops, heat exchange between ice and air, the heat of crystallization, evaporation, sublimation and condensation. The paper presents the results of solving benchmark and model problems, demonstrating the effectiveness of the IceVision technique and the reliability of the obtained results.

  3. Лукьянцев Д.С., Афанасьев Н.Т., Танаев А.Б., Чудаев С.О.
    Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443

    Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.

    Lukyantsev D.S., Afanasiev N.T., Tanaev A.B., Chudaev S.O.
    Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443

    Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.

  4. Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

    Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

  5. Плохотников К.Э.
    Проблема выбора решений при классическом формате описания молекулярной системы
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1573-1600

    Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения уравнения Шрёдингера методом Монте-Карло показали огромную неопределенностьв выборе решений. С одной стороны, оказалось возможным построить множество новых решений, с другой стороны, резко обостриласьпроб лема их связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, метода молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигурационного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим задачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы выбора), по заданному набору стационарных точек реконструироватьф ункцию потенциальной энергии (обратная задача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновесных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциальной энергии: бинарный, трехчастичный и т.д., многочастичный потенциал максимальной частичности. Обсуждается и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально многочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования многочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время. Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных точек согласуются с соответствующей формой функции потенциальной энергии.

    Plokhotnikov K.E.
    The problem of choosing solutions in the classical format of the description of a molecular system
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600

    The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.

  6. Аристов В.В., Ильин О.В.
    Описание быстрых процессов вторжения на основе кинетической модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 829-838

    В последние годы моделирование социальных, социо-биологических и исторических процессов получило большое развитие. В настоящей работе на основе кинетического подхода моделируются исторические процессы: агрессивное вторжение нацистской Германии в Польшу, Францию и СССР. Показано, что изучаемая система нелинейных уравнений полностью интегрируема: общее решение строится в виде квадратур. Вторжение (блицкриг) описывается краевой задачей Коши для двухэлементной кинетической модели с однородными по двум частям пространства начальными условиями. Решение данной задачи имеет вид бегущей волны, а скорость смещения линии фронта зависит от отношения начальных концентраций войск. Полученные оценки скорости распространения фронта согласуются с историческими фактами.

    Aristov V.V., Ilyin O.V.
    Description of the rapid invasion processes by means of the kinetic model
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 829-838

    Recently many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we investigate the nazi Germany invasion in Poland, France and USSR from the kinetic theory point of view. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial uniform initial conditions. The solution of the problem is given in the form of the traveling wave and the propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be obtained in terms of the quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  7. Лобанов А.И., Миров Ф.Х.
    Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164

    Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.

    В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.

    Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.

    Lobanov A.I., Mirov F.Kh.
    On the using the differential schemes to transport equation with drain in grid modeling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1149-1164

    Modern power transportation systems are the complex engineering systems. Such systems include both point facilities (power producers, consumers, transformer substations, etc.) and the distributed elements (f.e. power lines). Such structures are presented in the form of the graphs with different types of nodes under creating the mathematical models. It is necessary to solve the system of partial differential equations of the hyperbolic type to study the dynamic effects in such systems.

    An approach similar to one already applied in modeling similar problems earlier used in the work. New variant of the splitting method was used proposed by the authors. Unlike most known works, the splitting is not carried out according to physical processes (energy transport without dissipation, separately dissipative processes). We used splitting to the transport equations with the drain and the exchange between Reimann’s invariants. This splitting makes possible to construct the hybrid schemes for Riemann invariants with a high order of approximation and minimal dissipation error. An example of constructing such a hybrid differential scheme is described for a single-phase power line. The difference scheme proposed is based on the analysis of the properties of the schemes in the space of insufficient coefficients.

    Examples of the model problem numerical solutions using the proposed splitting and the difference scheme are given. The results of the numerical calculations shows that the difference scheme allows to reproduce the arising regions of large gradients. It is shown that the difference schemes also allow detecting resonances in such the systems.

  8. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

    Malkov S.Yu., Davydova O.I.
    Modernization as a global process: the experience of mathematical modeling
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873

    The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.

    Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.

  9. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

    Govorkov D.A., Novikov V.P., Solovyev I.G., Tsibulsky V.R.
    Interval analysis of vegetation cover dynamics
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1191-1205

    In the development of the previously obtained result on modeling the dynamics of vegetation cover, due to variations in the temperature background, a new scheme for the interval analysis of the dynamics of floristic images of formations is presented in the case when the parameter of the response rate of the model of the dynamics of each counting plant species is set by the interval of scatter of its possible values. The detailed description of the functional parameters of macromodels of biodiversity, desired in fundamental research, taking into account the essential reasons for the observed evolutionary processes, may turn out to be a problematic task. The use of more reliable interval estimates of the variability of functional parameters “bypasses” the problem of uncertainty in the primary assessment of the evolution of the phyto-resource potential of the developed controlled territories. The solutions obtained preserve not only a qualitative picture of the dynamics of species diversity, but also give a rigorous, within the framework of the initial assumptions, a quantitative assessment of the degree of presence of each plant species. The practical significance of two-sided estimation schemes based on the construction of equations for the upper and lower boundaries of the trajectories of the scatter of solutions depends on the conditions and measure of proportional correspondence of the intervals of scatter of the initial parameters with the intervals of scatter of solutions. For dynamic systems, the desired proportionality is not always ensured. The given examples demonstrate the acceptable accuracy of interval estimation of evolutionary processes. It is important to note that the constructions of the estimating equations generate vanishing intervals of scatter of solutions for quasi-constant temperature perturbations of the system. In other words, the trajectories of stationary temperature states of the vegetation cover are not roughened by the proposed interval estimation scheme. The rigor of the result of interval estimation of the species composition of the vegetation cover of formations can become a determining factor when choosing a method in the problems of analyzing the dynamics of species diversity and the plant potential of territorial systems of resource-ecological monitoring. The possibilities of the proposed approach are illustrated by geoinformation images of the computational analysis of the dynamics of the vegetation cover of the Yamal Peninsula and by the graphs of the retro-perspective analysis of the floristic variability of the formations of the landscapelithological group “Upper” based on the data of the summer temperature background of the Salehard weather station from 2010 to 1935. The developed indicators of floristic variability and the given graphs characterize the dynamics of species diversity, both on average and individually in the form of intervals of possible states for each species of plant.

  10. Мельникова И.В., Бовкун В.А.
    Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795

    Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.

    Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.

    В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.

    • В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.

    • В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.

    • Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.

    • Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.

    Melnikova I.V., Bovkun V.A.
    Connection between discrete financial models and continuous models with Wiener and Poisson processes
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 781-795

    The paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented.

    • In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models.

    • In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application.

    The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function $v(t, x)$, which, when $x = S (t)$ is substituted, where $S(t)$ is the stock price at the moment time $t$, gives the price of the option in the model with continuous perturbation by Brownian motion.

    The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.