Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети.
Changepoint detection on financial data using deep learning approach
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.
To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.
The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.
As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.
-
Оценка вероятностной модели трудового процесса сотрудника
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 969-975В статье представлена математическая модель оценки трудового процесса, построенного на основе байесовской сети. Основное внимание уделено оценке качественных характеристик продукта труда. Использование описанной модели предполагается на предприятиях с системой управления трудовыми процессами.
Ключевые слова: оценка труда, моделирование трудового процесса, байесовская сеть, вероятностное моделирование.
Estimation of probabilistic model of employee labor process
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 969-975Просмотров за год: 1.The mathematical estimation model for employee labor process, built on the basis of Bayesian network is presented in the article. The great attention is given to the estimation of qualitative characteristics of labor product. Usage of described model is supposed in the companies with the management employee workflows system.
-
Определение добровольных вычислений: формальный подход
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 565-571Добровольные вычисления напоминают частные desktop гриды, тогда как desktop гриды не полностью эквивалентны добровольным вычислениям. Известны несколько попыток отличить и категоризировать их, используя как неофициальные, так и формальные методы. Однако, наиболее формальные подходы моделируют специфическое промежуточное ПО (middleware) и не сосредотачиваются на общем понятии добровольного или desktop грид. Эта работа и есть попытка формализовать их характеристики и отношения. Для этой цели применяется формальное моделирование, которое пытается охватить семантику их функциональных возможностей — в противоположность сравнениям, основанным на свойствах, особенностях, и т. п. Мы применяем этот метод моделирования с целью формализовать добровольную вычислительную систему Открытой Инфраструктуры Беркли для сетевых вычислений (BOINC) [Anderson D. P., 2004].
Defining volunteer computing: a formal approach
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 565-571Volunteer computing resembles private desktop grids whereas desktop grids are not fully equivalent to volunteer computing. There are several attempts to distinguish and categorize them using informal and formal methods. However, most formal approaches model a particular middleware and do not focus on the general notion of volunteer or desktop grid computing. This work makes an attempt to formalize their characteristics and relationship. To this end formal modeling is applied that tries to grasp the semantic of their functionalities — as opposed to comparisons based on properties, features, etc. We apply this modeling method to formalize the Berkeley Open Infrastructure for Network Computing (BOINC) [Anderson D. P., 2004] volunteer computing system.
-
Размещение точек Штейнера в дереве Штейнера на плоскости средствами MatLab
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 707-713Рассматривается способ локализации точек Штейнера средствами MatLab в задаче Штейнера с потоком на евклидовой плоскости, когда соединяемые точки лежат в вершинах четырех-, пяти- или шестиугольника. Матрица смежности считается заданной. Метод использует способ решения трехточечной задачи Штейнера, в которой дерево Штейнера связывает три точки. Представлена визуализация най- денных решений.
Ключевые слова: задача Штейнера, точка Штейнера, источник ресурса, потребитель ресурса, трехточечная задача Штейнера, задача для большего числа, понижение размерности.
Allocation of steinerpoints in euclidean Steiner tree problem by means of MatLab package
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 707-713Просмотров за год: 4.The problem of allocation of Steiner points in Euclidean Steiner Tree is considered. The cost of network is sum of building costs and cost of the information transportation. Euclidean Steiner tree problem in the form of topological network design is a good model of this problem.
The package MatLab has the way to solve the second part of this problem — allocate Steiner points under condition that the adjacency matrix is set. The method to get solution has been worked out. The Steiner tree is formed by means of solving of the sequence of "three points" Steiner
-
Облачные вычисления для виртуального полигона
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 753-758В настоящее время облачные вычисления являются важной и актуальной темой в ИТ. Многие компании и учебные заведения развертывают облачные инфраструктуры, чтобы преодолеть свои проблемы, такие как легкость доступа к данным, обновление программного обеспечения с минимальными затратами, возможности неограниченного хранения данных и ряд других преимуществ по сравнению с традиционными сетевыми инфраструктурами. В работе рассматривается применение технологий облачных вычислений при моделировании морской среды и обработке данных. В данном случае облачные вычисления предлагается для интеграции и совместного использования морских информационных ресурсов. В статье облачные вычисления рассматриваются как средство снижения затрат при организации виртуального полигона в морских исследованиях.
Просмотров за год: 7.Nowadays cloud computing is an important topic in the field of information technology and computer system. Several companies and educational institutes have deployed cloud infrastructures to overcome their problems such as easy data access, software updates with minimal cost, large or unlimited storage, efficient cost factor, backup storage and disaster recovery, and some other benefits if compare with the traditional network infrastructures. The paper present the study of cloud computing technology for marine environmental data and processing. Cloud computing of marine environment information is proposed for the integration and sharing of marine information resources. It is highly desirable to perform empirical requiring numerous interactions with web servers and transfers of very large archival data files without affecting operational information system infrastructure. In this paper, we consider the cloud computing for virtual testbed to minimize the cost. That is related to real time infrastructure.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"