Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'понижение размерности':
Найдено статей: 4
  1. Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.

  2. Предложен метод отображения промежуточных представлений C-, C++-программ в пространство векторов (эмбеддингов) для оценки производительности программ на этапе компиляции, без необходимости исполнения. Использование эмбеддингов для данной цели позволяет не проводить сравнение графов исследуемых программ непосредственно, что вычислительно упрощает задачу сравнения программ. Метод основан на серии трансформаций исходного промежуточного представления (IR), таких как: инструментирование — добавление фиктивных инструкций в оптимизационном проходе компилятора в зависимости от разности смещений в текущей инструкции обращения к памяти относительно предыдущей, преобразование IR в многомерный вектор с помощью технологии IR2Vec с понижением размерности по алгоритму t-SNE (стохастическое вложение соседей с t-распределением). В качестве метрики производительности предлагается доля кэш-промахов 1-го уровня (D1 cache misses). Приводится эвристический критерий отличия программ с большей долей кэш-промахов от программ с меньшей долей по их образам. Также описан разработанный в ходе работы проход компилятора, генерирующий и добавляющий фиктивные инструкции IR согласно используемой модели памяти. Приведено описание разработанного программного комплекса, реализующего предложенный способ оценивания на базе компиляторной инфраструктуры LLVM. Проведен ряд вычислительных экспериментов на синтетических тестах из наборов программ с идентичными потоками управления, но различным порядком обращений к одномерному массиву, показано, что коэффициент корреляции между метрикой производительности и расстоянием до эмбеддинга худшей программы в наборе отрицателен вне зависимости от инициализации t-SNE, что позволяет сделать заключение о достоверности эвристического критерия. Также в статье рассмотрен способ генерации тестов. По результатам экспериментов, вариативность значений метрики производительности на исследуемых множествах предложена как метрика для улучшения генератора тестов.

  3. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

  4. Лотарев Д.Т.
    Размещение точек Штейнера в дереве Штейнера на плоскости средствами MatLab
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 707-713

    Рассматривается способ локализации точек Штейнера средствами MatLab в задаче Штейнера с потоком на евклидовой плоскости, когда соединяемые точки лежат в вершинах четырех-, пяти- или шестиугольника. Матрица смежности считается заданной. Метод использует способ решения трехточечной задачи Штейнера, в которой дерево Штейнера связывает три точки. Представлена визуализация най- денных решений.

    Просмотров за год: 4.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.