Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'memory':
Найдено статей: 47
  1. Соколов С.В.
    Памяти Алексея Владимировича Борисова
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 9-14

    24 января ушел из жизни блестящий ученый, доктор физико-математических наук, профессор, лауреат премии имени С. В. Ковалевской Алексей Владимирович Борисов. Алексей Владимирович родился и вырос в Москве. Окончив среднюю школу, он поступил на факультет специального машиностроения МВТУ им. Н.Э. Баумана. Уже во время учебы Алексей Владимирович посещает научный семинар на механико-математическом факультете Московского государственного университета им. М.В. Ломносова, что во многом определяет направление его будущих исследований. После защиты кандидатской диссертации Алексей Владимирович создает в Ижевске научную группу, его последующая научная биография очень широка: Екатеринбург, Чебоксары, Иннополис, Долгопрудный, Москва. Борисов основывает и воз- главляет серию научных журналов: «Регулярная и хаотическая динамика», «Нелинейная динамика»; является главным редактором в журналах «Вестник Удмуртского университета», «Компьютерные исследования и моделирование». Научное наследие А. В. Борисова обширно, список публикаций составляет более 200 работ, более 170 из которых опубликованы в журналах, индексируемых международными базами Scopus и Web of Science. Его перу принадлежит более 10 монографий.

    Sokolov S.V.
    In memory of Alexey Vladimirovich Borisov 1965–2021
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 9-14

    On January 24, a famous scientist, doctor of physical and mathematical sciences, professor and laureate of the Prize of S.V. Kowalevsky Alexey Vladimirovich Borisov passed away. Alexey Vladimirovich was born and raised in Moscow. After graduating from high school, he entered the Faculty of Special Mechanical Engineering of the Bauman Moscow State Technical University. Already during his studies, Alexey Vladimirovich attends a scientific seminar at the Faculty of Mechanics and Mathematics of the Lomnosov Moscow State University, which largely determines the direction of his future research. After defending his Ph.D. thesis, Alexey Vladimirovich creates a scientific group in Izhevsk, his subsequent scientific biography is very wide: Yekaterinburg, Cheboksary, Innopolis, Dolgoprudny, Moscow. Borisov founds and heads the series of scientific journals Regular and Chaotic Dynamics, Nonlinear Dynamics, is the editor-in-chief in the journals Bulletin of Udmurt University, Computer research and modeling. The scientific heritage of A.V. Borisov is extensive, the list of publications is more than 200 works, more than 170 of which have been published in journals indexed by international databases Scopus and Web of Science. More than 10 monographs belong to him.

  2. Памяти Андрея Юрьевича Трифонова
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 673-673
    In memory of Andrey Yurievich Trifonov
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 673-673
  3. Памяти Александра Владимировича Коганова
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 883-884
    In memory of Aleksander Vladimirovich Koganov
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 883-884
  4. Памяти Юрия Михайловича Романовского
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1003-1005
    In memory of Yuri Mihajlovich Romanovsky
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1003-1005
  5. Антонов И.В., Бруттан Ю.В.
    Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124

    В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.

    Antonov I.V., Bruttan I.V.
    Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124

    The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.

  6. Яшина М.В., Таташев А.Г.
    Памяти А. П. Буслаева — друга, ученого и основателя научной школы математического моделирования транспортных потоков
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 11-16
    Yashina M.V., Tatashev A.G.
    In memory of A. P.Buslaev — friend, scientist and founder of the scientific school of mathematical modeling of traffic flows
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 11-16
  7. Грачев В.А., Найштут Ю.С.
    Сплошные среды из тонких пластин
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 655-670

    Представлена фрактальная система из тонких шарнирно соединенных пластинок, которая может быть изучена методами механики сплошной среды с внутренними степенями свободы. Конструкция является трансформирующейся: в начальном положении это практически одномерное многообразие малого диаметра, после развертки система занимает значительный объем. Геометрия сплошной среды исследуется методом подвижного репера. На основе уравнений структуры Картана выводятся соотношения, позволяющие определить геометрию введенных многообразий. В доказательствах существенно используется тот факт, что составляющие фрактал пластинки являются тонкими, а их длина мала по сравнению с габаритами системы. Изучается механика введенных сплошных сред, если шарниры между пластинками являются идеальными жесткопластическими и выполнены из материалов с памятью формы. Опираясь на теоремы о предельных нагрузках, вычисляются внутреннее давление, необходимое для развертывания пакета в объемную конструкцию, а также затраты тепла для возврата системы в первоначальное состояние.

    Grachev V.A., Nayshtut Yu.S.
    Solids composed of thin plates
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 655-670

    The paper demonstrates a fractal system of thin plates connected with hinges. The system can be studied using the methods of mechanics of solids with internal degrees of freedom. The structure is deployable — initially it is close to a small diameter one-dimensional manifold that occupies significant volume after deployment. The geometry of solids is studied using the method of the moving hedron. The relations enabling to define the geometry of the introduced manifolds are derived based on the Cartan structure equations. The proof substantially makes use of the fact that the fractal consists of thin plates that are not long compared to the sizes of the system. The mechanics is described for the solids with rigid plastic hinges between the plates, when the hinges are made of shape memory material. Based on the ultimate load theorems, estimates are performed to specify internal pressure that is required to deploy the package into a three-dimensional structure, and heat input needed to return the system into its initial state.

    Просмотров за год: 2.
  8. Гурия Г.Т.
    Памяти Дмитрия Сергеевича Чернавского
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 379-388
    Guria G.T.
    In memory of Dmitrii Sergeevich Chernavskii
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 379-388
    Просмотров за год: 6.
  9. Представлен итерационный алгоритм, который численно решает нелинейные одномерные несингулярные интегральные уравнения Фредгольма и Вольтерры второго рода типа Урысона. Показано, что метод последовательных приближений Пикара может быть использован при численном решении такого типа уравнений. Сходимость числовой схемы гарантируется теоремами о неподвижной точке. При этом квадратурный алгоритм основан на явной форме встроенного правила Рунге–Кутты пятого порядка с адаптивным контролем размера шага. Возможность контроля локальных ошибок квадратур позволяет создавать очень точные автоматические числовые схемы и значительно уменьшить основной недостаток итераций Пикара, а именно чрезвычайно большое количество вычислений с увеличением глубины рекурсии. Наш алгоритм организован так, что по сравнению с большинством подходов нелинейность интегральных уравнений не вызывает каких-либо дополнительных вычислительных трудностей, его очень просто применять и реализовывать в программе. Наш алгоритм демонстрирует практически важные черты универсальности. Во-первых, следует подчеркнуть, что метод столь же прост в применении к нелинейным, как и к линейным уравнениям типа Фредгольма и Вольтерры. Во-вторых, алгоритм снабжен правилами останова, по которым вычисления могут в значительной степени контролироваться автоматически. Представлен компактный C++-код описанного алгоритма. Реализация нашей программы является самодостаточной: она не требует никаких предварительных вычислений, никаких внешних функций и библиотек и не требует дополнительной памяти. Приведены числовые примеры, показывающие применимость, эффективность, надежность и точность предложенного подхода.

    We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.

  10. Коганов А.В., Лобанов А.И., Ризниченко Г.Ю., Рубин А.Б., Фурсова П.В., Хрущев С.С.
    Памяти Алексея Владимировича Борисова
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 15-18
    Koganov A.V., Lobanov A.I., Riznichenko G.Yu., Rubin A.B., Fursova P.V., Khruschev S.S.
    In memory of Alexey Vladimirovich Borisov 1965–2021
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 15-18
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.