Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'medium dynamics':
Найдено статей: 30
  1. Багаев Р.А., Голубев В.И., Голубева Ю.А.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

    Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  2. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

    For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  3. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  4. Голубев В.И., Хохлов Н.И.
    Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240

    Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.

    Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.

    В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.

    Golubev V.I., Khokhlov N.I.
    Estimation of anisotropy of seismic response from fractured geological objects
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 231-240

    Seismic survey process is the common method of prospecting and exploration of deposits: oil and natural gas. Invented at the beginning of the XX century, it has received significant development and is currently used by almost all service oil companies. Its main advantages are the acceptable cost of fieldwork (in comparison with drilling wells) and the accuracy of estimating the characteristics of the subsurface area. However, with the discovery of non-traditional deposits (for example, the Arctic shelf, the Bazhenov Formation), the task of improving existing and creating new seismic data processing technologies became important. Significant development in this direction is possible with the use of numerical simulation of the propagation of seismic waves in realistic models of the geological medium, since it is possible to specify an arbitrary internal structure of the medium with subsequent evaluation of the synthetic signal-response.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium containing fractured inclusions in the process of seismic exploration. The authors constructed a three-dimensional model of a layered massif containing a layer of fluid-saturated cracks, which makes it possible to estimate the signal-response when the structure of the inhomogeneous inclusion is varied. To describe physical processes, we use a system of equations for a linearly elastic body in partial derivatives of the second order, which is solved numerically by a grid-characteristic method on hexahedral grid. In this case, the crack planes are identified at the stage of constructing the grid, and further an additional correction is used to ensure a correct seismic response for the model parameters typical for geological media.

    In the paper, three-component area seismograms with a common explosion point were obtained. On their basis, the effect of the structure of a fractured medium on the anisotropy of the seismic response recorded on the day surface at a different distance from the source was estimated. It is established that the kinematic characteristics of the signal remain constant, while the dynamic characteristics for ordered and disordered models can differ by tens of percents.

    Просмотров за год: 11. Цитирований: 4 (РИНЦ).
  5. Широкова Е.Н., Садин Д.В.
    Волновые и релаксационные эффекты при истечении газовзвеси, частично заполняющей цилиндрический канал
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1495-1506

    Работа посвящена изучению волновых и релаксационных эффектов при импульсном истечении смеси газа с большим содержанием твердых частиц из цилиндрического канала при его начальном частичном заполнении. Задача сформулирована в двухскоростной двухтемпературной постановке и решалась численно гибридным методом крупных частиц второго порядка аппроксимации. Численный алгоритм реализован в виде параллельных вычислений с использованием базовых языковых средств Free Pascal. Применимость и точность метода для волновых потоков концентрированных газовзвесей подтверждены сопоставлением с тестовыми асимптотически точными решениями. Погрешность расчета на сетке невысокой детализации вх арактерных зонах течения двухфазной среды составила 10−6 . . . 10−5.

    На основе волновой диаграммы выполнен анализ физической картины истечении газовзвеси, частично заполняющей цилиндрический канал. Установлено, что в зависимости от степени начального заполнения канала формируются различные режимы истечения. Первый режим реализуется при небольшой степени загрузки камеры высокого давления, при которой левая граница смеси газа и частиц пересекает выходное сечение до прихода отраженной от дна канала волны разрежения. При этом достигается максимальное значение массового расхода смеси. Другие режимы формируются в случаях большего начального заполнения канала, когда отраженные от дна канала волны разрежения взаимодействуют со слоем газовзвеси и уменьшают интенсивность ее истечения.

    Изучено влияние релаксационных свойств при изменении размеров частиц на динамику ограниченного слоя газодисперсной среды. Сопоставление истечения ограниченного слоя газовзвеси с различными размерами частиц показывает, что для мелких частиц (число Стокса меньше 0,001) наблюдается аномальное явление одновременного существования ударно-волновых структур в сверх- и дозвуковом потоке газа и взвеси. С увеличением размеров дисперсных включений скачки уплотнения в области двухфазной смеси сглаживаются, а для частиц (число Стокса больше 0,1) — практически исчезают. При этом ударно-волновая конфигурация сверхзвукового газового потока на выходе из канала сохраняется, а положения и границы энергонесущих объемов газовзвеси при изменении размеров частиц близки.

    Shirokova E.N., Sadin D.V.
    Wave and relaxation effects during the outflow of a gas suspension partially filling a cylindrical channel
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1495-1506

    The paper is devoted to the study of wave and relaxation effects during the pulsed outflow of a gas mixture with a high content of solid particles from a cylindrical channel during its initial partial filling. The problem is formulated in a two-speed two-temperature formulation and was solved numerically by the hybrid large-particle method of the second order of approximation. The numerical algorithm is implemented in the form of parallel computing using basic Free Pascal language tools. The applicability and accuracy of the method for wave flows of concentrated gas-particles mixtures is confirmed by comparison with test asymptotically accurate solutions. The calculation error on a grid of low detail in the characteristic flow zones of a two-phase medium was 10-6 . . . 10-5.

    Based on the wave diagram, the analysis of the physical pattern of the outflow of a gas suspension partially filling a cylindrical channel is performed. It is established that, depending on the degree of initial filling of the channel, various outflow modes are formed. The first mode is implemented with a small degree of loading of the high-pressure chamber, at which the left boundary of the gas-particles mixture crosses the outlet section before the arrival of the rarefaction wave reflected from the bottom of the channel. At the same time, the maximum value of the mass flow rate of the mixture is achieved. Other modes are formed in cases of a larger initial filling of the channel, when the rarefaction waves reflected from the bottom of the channel interact with the gas suspension layer and reduce the intensity of its outflow.

    The influence of relaxation properties with changing particle size on the dynamics of a limited layer of a gas-dispersed medium is studied. Comparison of the outflow of a limited gas suspension layer with different particle sizes shows that for small particles (the Stokes number is less than 0.001), an anomalous phenomenon of the simultaneous existence of shock wave structures in the supersonic and subsonic flow of gas and suspension is observed. With an increase in the size of dispersed inclusions, the compaction jumps in the region of the two-phase mixture are smoothed out, and for particles (the Stokes number is greater than 0.1), they practically disappear. At the same time, the shock-wave configuration of the supersonic gas flow at the outlet of the channel is preserved, and the positions and boundaries of the energy-carrying volumes of the gas suspension are close when the particle sizes change.

  6. Фаворская А.В., Голубев В.И.
    О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771

    В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.

    Favorskaya A.V., Golubev V.I.
    About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 761-771

    In this paper we present Rayleigh formulas obtained from Kirchhoff integral formulas, which can later be used to obtain migration images. The relevance of the studies conducted in the work is due to the widespread use of migration in the interests of seismic oil and gas seismic exploration. A special feature of the work is the use of an elastic approximation to describe the dynamic behaviour of a geological environment, in contrast to the widespread acoustic approximation. The proposed approach will significantly improve the quality of seismic exploration in complex cases, such as permafrost and shelf zones of the southern and northern seas. The complexity of applying a system of equations describing the state of a linear-elastic medium to obtain Rayleigh formulas and algorithms based on them is a significant increase in the number of computations, the mathematical and analytical complexity of the resulting algorithms in comparison with the case of an acoustic medium. Therefore in industrial seismic surveys migration algorithms for the case of elastic waves are not currently used, which creates certain difficulties, since the acoustic approximation describes only longitudinal seismic waves in geological environments. This article presents the final analytical expressions that can be used to develop software systems using the description of elastic seismic waves: longitudinal and transverse, thereby covering the entire range of seismic waves: longitudinal reflected PP-waves, longitudinal reflected SP-waves, transverse reflected PS-waves and transverse reflected SS-waves. Also, the results of comparison of numerical solutions obtained on the basis of Rayleigh formulas with numerical solutions obtained by the grid-characteristic method are presented. The value of this comparison is due to the fact that the method based on Rayleigh integrals is based on analytical expressions, while the grid-characteristic method is a method of numerical integration of solutions based on a calculated grid. In the comparison, different types of sources were considered: a point source model widely used in marine and terrestrial seismic surveying and a flat wave model, which is also sometimes used in field studies.

    Просмотров за год: 11.
  7. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

    Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  8. Поляков С.В., Подрыга В.О.
    Исследование нелинейных процессов на границе раздела газового потока имет аллической стенки микроканала
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 781-794

    Работа посвящена исследованию влияния нелинейных процессов в пограничном слое на общий характер течений газа в микроканалах технических систем. Подобное исследование актуально для задач нанотехнологий. Одной из важных задач в этой сфере является анализ потоков газа в микроканалах в случае переходных и сверхзвуковых течений. Результаты этого анализа важны для техники газодинамического напыления и для синтеза новых наноматериалов. Из-за сложности реализации полномасштабных экспериментов на микро- и наномасштабах они чаще всего заменяются компьютерным моделированием. Эффективность компьютерного моделирования достигается как за счет использования новых многомасштабных моделей, так и за счет сочетания сеточных методов и методов частиц. В данной работе мы используем метод молекулярной динамики. Он был применен для исследования установления газового микротечения в металлическом канале. В качестве газовой среды был выбран азот. Металлические стенки микроканалов состояли из атомов никеля. В численных экспериментах были рассчитаны коэффициенты аккомодации на границе между течением газа и металлической стенкой. Исследование микросистемы в пограничном слое позволило сформировать многокомпонентную макроскопическую модель граничных условий. Эта модель была интегрирована в макроскопическое описание течения на основе системы квазигазодинамических уравнений. На основе такой преобразованной газодинамической модели были проведены расчеты микротечения в реальной микросистеме. Результаты были сопоставлены с классическим расчетом течения, не учитывающим нелинейные процессы в пограничном слое. Сравнение показало необходимость использования разработанной модели граничных условий и ее интеграции с классическим газодинамическим подходом.

    Polyakov S.V., Podryga V.O.
    A study of nonlinear processes at the interface between gas flow and the metal wall of a microchannel
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 781-794

    The work is devoted to the study of the influence of nonlinear processes in the boundary layer on the general nature of gas flows in microchannels of technical systems. Such a study is actually concerned with nanotechnology problems. One of the important problems in this area is the analysis of gas flows in microchannels in the case of transient and supersonic flows. The results of this analysis are important for the gas-dynamic spraying techique and for the synthesis of new nanomaterials. Due to the complexity of the implementation of full-scale experiments on micro- and nanoscale, they are most often replaced by computer simulations. The efficiency of computer simulations is achieved by both the use of new multiscale models and the combination of mesh and particle methods. In this work, we use the molecular dynamics method. It is applied to study the establishment of a gas microflow in a metal channel. Nitrogen was chosen as the gaseous medium. The metal walls of the microchannels consisted of nickel atoms. In numerical experiments, the accommodation coefficients were calculated at the boundary between the gas flow and the metal wall. The study of the microsystem in the boundary layer made it possible to form a multicomponent macroscopic model of the boundary conditions. This model was integrated into the macroscopic description of the flow based on a system of quasi-gas-dynamic equations. On the basis of such a transformed gas-dynamic model, calculations of microflow in real microsystem were carried out. The results were compared with the classical calculation of the flow, which does not take into account nonlinear processes in the boundary layer. The comparison showed the need to use the developed model of boundary conditions and its integration with the classical gas-dynamic approach.

  9. Захаров П.В.
    Эффект нелинейной супратрансмиссии в дискретных структурах: обзор
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 599-617

    В данной работе приводится обзор исследований, посвященных нелинейной супратрансмиссии и сопутствую- щим явлениям. Данный эффект заключается в передаче энергии на частотах, не поддерживаемых рассматриваемыми системами. Супратрансмиссия не зависит от интегрируемости системы, устойчива к демпфированию и различным классамгр аничных условий. Кроме того, нелинейная дискретная среда при некоторых общих условиях, накладываемых на структуру, может создавать неустойчивость, обусловленную внешним периодическим воздействием. Она является порождающимпроце ссом, лежащим в основе нелинейной супратрансмиссии. Это возможно, когда система поддерживает нелинейные моды различной природы, в частности дискретные бризеры. Тогда энергия проникает в систему, как только амплитуда внешнего гармонического возбуждения превышает максимальную амплитуду статического бризера той же частоты.

    Эффект нелинейной супратрансмиссии является важным свойством многих дискретных структур. Необходимыми условиями для его существования являются дискретность и нелинейность среды. Его проявление в системах различной природы говорит о его фундаментальности и значимости. В данном обзоре рассмотрены основные работы, затрагивающие вопрос нелинейной супратрансмисии в различных системах, преимущественно модельных.

    Многими авторскими коллективами ведутся исследования данного эффекта. В первую очередь это модели, описываемые дискретными уравнениями, в том числе sin-Гордона и дискретным нелинейным уравнением Шрёдингера. При этом эффект не является исключительно модельным и проявляет себя в натурных экспериментах в электрических цепях, в нелинейных цепочках осцилляторов, а также в метастабильных модульных метаструктурах. Происходит поэтапное усложнение моделей, что приводит к более глубокому пониманию явления супратрансмиссии, а переход к разупорядоченным и с элементами хаоса структурам позволяет говорить о более тонком проявлении данного эффекта. Численные асимптотические подходы позволяют исследовать нелинейную супратрансмиссию в сложных неинтегрируемых системах. Усложнение всевозможных осцилляторов, как физических, так и электрических, актуально для различных реальных устройств, базирующихся на подобных системах. В том числе в области нанообъектов и транспорта энергии в них посредством рассматриваемого эффекта. К таким системам относятся молекулярные, кристаллические кластеры и наноустройства. В заключении работы приводятся основные тенденции исследований нелинейной супратрансмиссии.

    Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  10. Герасимов А.Н., Шпитонков М.И.
    Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711

    Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.

    Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.

    В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.

    Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.

    Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.

    Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.

    Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.

    Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.

    Gerasimov A.N., Shpitonkov M.I.
    Mathematical model of the parasite – host system with distributed immunity retention time
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711

    The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.

    Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.

    In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.

    For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.

    For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.

    Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.

    It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.

    This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.