Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'mathematical modelling':
Найдено статей: 324
  1. Попов В.С., Попова А.А.
    Моделирование гидроупругих колебаний стенки канала, имеющей нелинейно-упругую опору
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 79-92

    В работе сформулирована математическая модель для исследования нелинейного гидроупругого отклика стенки узкого канала, заполненного пульсирующей вязкой жидкостью, опирающейся на пружину c нелинейной жесткостью. В отличие от известных подходов в рамках предложенной модели осуществлен одновременный учет инерционных и диссипативных свойств вязкой несжимаемой жидкости и нелинейности восстанавливающей силы поддерживающей пружины. Математическая модель представляет собой систему уравнений плоской задачи гидроупругости, включающей уравнения движения вязкой несжимаемой жидкости, с соответствующими краевыми условиями, и уравнение движения стенки канала как одномассовой модели с восстанавливающей силой, имеющей кубическую нелинейность. Динамика вязкой жидкости первоначально исследована в рамках гидродинамической теории смазки, т.е. без учета инерции ее движения. На следующем этапе для учета инерции движения вязкой жидкости использован метод итерации. Найдены законы распределения гидродинамических параметров вязкой жидкости в канале, что позволило определить ее реакцию, действующую на стенку канала. В результате показано, что исходная задача гидроупругости сводится к одному нелинейному уравнению, совпадающему с уравнением Дуффинга. В данном уравнении коэффициент демпфирования определяется физическими свойствами жидкости и геометрическими размерами канала, а учет инерции движения жидкости приводит к появлению дополнительной присоединенной массы, зависящей от тех же параметров. Исследование нелинейного уравнения гидроупругих колебаний проведено методом гармонического баланса для основной частоты пульсаций вязкой жидкости. В результате найден основной гидроупругий отклик стенки канала, опирающейся на пружину с мягкой или жесткой кубической нелинейностью. Численное моделирование гидроупругого отклика стенки канала показало возможность скачкообразного изменения амплитуд ее колебаний, а также дало возможность оценить влияние инерции движения жидкости на частотный диапазон, в котором наблюдаются данные изменения.

    Popov V.S., Popova A.A.
    Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92

    The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.

  2. Сидоренко Д.А., Уткин П.С.
    Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766

    В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.

    Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.

    Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  3. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

    Rusyak I.G., Tenenev V.A., Sufiyanov V.G., Klyukin D.A.
    Simulation of uneven combustion and stress-strain state of powder elements of a tubular charge during firing
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1281-1300

    The paper presents the physical and mathematical formulation of the problems of internal ballistics of an artillery shot for a charge consisting of a set of powder tubes and their stress-strain state. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. It is assumed that the equivalent tube moves along the axis of the bore. The speed of movement of an equivalent tubular charge and its current position are determined from Newton’s second law. When calculating the flow parameters, two-dimensional axisymmetric equations of gas dynamics were used, for the solution of which an axisymmetric orthogonalized difference grid is constructed, which adapts to the flow conditions. The control volume method is used to numerically solve the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov’s problem of the decay of an arbitrary discontinuity. The stress-strain state is modeled for a separate burning powder tube located in the field of gas-dynamic parameters. The calculation of the gas-dynamic parameters of the shot is carried out without taking into account the deformed state of the powder elements. The behavior of powder elements during firing is considered under these conditions. The finite element method with the division of the calculation area into triangular elements is used to solve the problem of elasticity. In the process of powder tube burnout, the computational grid on each time layer of the dynamic problem is completely updated due to a change in the boundaries of the powder element due to combustion. The paper shows the time dependences of the parameters of the internal ballistics process and the stress-strain state of powder elements, as well as the distribution of the main parameters of the flow of combustion products at different points in time. It has been established that the tubular powder elements during the shot experience significant deformations, which must be taken into account when solving the basic problem of internal ballistics. The data obtained give an idea of the level of equivalent stresses acting at various points of the powder element. The results obtained indicate the relevance of the conjugate formulation of the problem of gas dynamics and the stress-strain state for charges consisting of tubular powders, since this allows a new approach to the design of tubular charges and opens up the possibility of determining the parameters on which the physics of the combustion process of gunpowder significantly depends, therefore, and the dynamics of the shot process.

  4. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  5. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

    An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.

  6. Литвинов В.Н., Чистяков А.Е., Никитина А.В., Атаян А.М., Кузнецова И.Ю.
    Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672

    Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.

    Litvinov V.N., Chistyakov A.E., Nikitina A.V., Atayan A.M., Kuznetsova I.Y.
    Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672

    The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.

  7. Колобов А.В., Анашкина А.А., Губернов В.В., Полежаев А.А.
    Математическая модель роста опухоли с учетом дихотомии миграции и пролиферации
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 415-422

    Исследована математическая модель роста инвазивной опухоли, которая учитывает тот факт, что клетка не может одновременно активно мигрировать в ткани и пролиферировать. Переход из одного состояния в другое пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации клетки делятся, при низкой — мигрируют. Была исследована зависимость скорости роста опухоли от параметров модели. Показано, что скорость пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации она практически не меняется, а ниже порогового значения рост опухоли существенно замедляется.

    Kolobov A.V., Anashkina A.A., Gubernov V.V., Polezhaev A.A.
    Mathematical model of tumor growth with migration and proliferation dichotomy
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 415-422

    Mathematical model of infiltrative tumour growth taking into account transitions between two possible states of malignant cell is investigated. These transitions are considered to depend on oxygen level in a threshold manner: high oxygen concentration allows cell proliferation, while concentration below some critical value induces cell migration. Dependence of infiltrative tumour spreading rate on model parameters has been studied. It is demonstrated that if the level of tissue oxygenation is high, tumour spreading rate remains almost constant; otherwise the spreading rate decreases dramatically with oxygen depletion.

    Просмотров за год: 3. Цитирований: 13 (РИНЦ).
  8. Самарин В.В.
    Математическое моделирование двуядерных систем при низкоэнергетических ядерных реакциях
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 385-392

    Для квантового описания поведения двуядерных систем на начальной стадии околобарьерного слияния тяжелых ядер использованы численные методы нахождения коллективных и одночастичных состояний. Коллективные возбужденные состояния в таких системах представляют собой согласованные колебания поверхностей сферических ядер. Одночастичные состояния внешних нейтронов аналогичны состояниям валентных электронов двухатомных молекул.

    Samarin V.V.
    Mathematical modeling of dinuclear systems in low energy nuclear reactions
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 385-392

    Numerical methods of obtaining collective and one-particle states were used for the quantum description of two-nuclear systems behavior at the initial stage of near-barrier heavy nuclei fusion. The collective exited states in such systems represent concordant oscillations of surfaces of spherical nuclei. The one-particle states of the external neutrons are similar to the states of valence electrons of diatomic molecules.

    Просмотров за год: 2.
  9. Апонин Ю.М., Апонина Е.А.
    Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190

    Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.

    Aponin Yu.M., Aponina E.A.
    The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190

    A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.

    Просмотров за год: 8. Цитирований: 3 (РИНЦ).
  10. Мизгулин В.В., Кадушников Р.М., Алиевский Д.М., Алиевский В.М.
    Моделирование плотных материалов методом упаковки сферополиэдров
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 757-766

    В работе предложен новый метод моделирования плотных материалов на основе алгоритма упаковки сферополиэдров, описана математическая модель сферополиэдра и обсуждены результаты вычислительных экспериментов на различных упаковках сферополиэдров. Результаты экспериментов показали сходимость метода. Проведенные эксперименты включают исследования упаковок сферополиэдров различной формы, полидисперсных и ориентированных структур. Метод может быть применен для виртуального проектирования плотных материалов, имеющих в составе несферические частицы.

    Mizgulin V.V., Kadushnikov R.M., Alievsky D.M., Alievsky V.M.
    The modeling of dense materials with spherepolyhedra packing method
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 757-766

    The paper presents a new dense material modeling method based on spherepolyhedra packing algorithm, describes mathematical model of spherepolyhedra and discuss the results of computation experiments on different spherepolyhedra packs. The results of experiments show convergence of proposed method. Experiments include investigations of spherepolyhedra packs with different shapes, polydisperse and oriented structures. Presented method would be applied to virtual design of dense materials composed of non-spherical particles.

    Просмотров за год: 7. Цитирований: 6 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.