Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'location':
Найдено статей: 56
  1. Апонин Ю.М., Апонина Е.А.
    Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190

    Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.

    Aponin Yu.M., Aponina E.A.
    The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190

    A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.

    Просмотров за год: 8. Цитирований: 3 (РИНЦ).
  2. Никитин И.С., Филимонов А.В., Якушев В.Л.
    Распространение волн Рэлея при косом ударе метеорита о поверхность земли и их воздействие на здания и сооружения
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 981-992

    В данной работе решается динамическая задача теории упругости о совместном нормальном и касательном воздействии на полупространство. С помощью этой задачи моделируется процесс наклонного падения метеорита на земную поверхность. Проведены исследования и расчеты поверхностной волны Рэлея. Полученное решение использовано в качестве внешнего воздействия на высотное здание, находящееся на некотором расстоянии от места падения для оценки безопасности и устойчивости его конструкции. Проведены численные эксперименты на основе конечно-элементного программного комплекса STARK ES. Рассчитаны амплитуды колебаний верхних этажей выбранного объекта при таком динамическом воздействии. Также проведено ихсистема тическое сравнение с результатами расчета при колебаниях основания, соответствующихст андартной акселерограмме 8-балльного землетрясения.

    Nikitin I.S., Filimonov A.V., Yakushev V.L.
    Propagation of Rayleigh waves at oblique impact of the meteorite about the earth’s surface and their effects on buildings and structures
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 981-992

    In this paper the dynamic elasticity problem of the simultaneous normal and tangential impact on the half-space is solved. This problem simulates the oblique incidence of meteorite on the Earth’s surface. The surface Rayleigh wave is investigated. The resulting solution is used as an external effect on the high-rise building, located at some distance from the spot of falling for the safety and stability assessment of its structure. Numerical experiments were made based on the finite element software package STARK ES. Upper floors amplitudes of the selected object were calculated under such dynamic effects. Also a systematic comparison with the results at the foundation vibrations, relevant to  standard a 8-point earthquake accelerograms, was made.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  3. Предложена конечно-элементная модель биомеханической системы адекватной сложности (с пространственными, оболочечными и балочными элементами), состоящая из имитатора большеберцовой кости с регенерирующей тканью в месте перелома и аппарата Илизарова. Модель позволяет задавать ортотропные упругие свойства материалов имитатора кости (областей компактной и спонгиозной тканей), вводить неоднородные жесткостные свойства регенерирующей ткани в зоне места перелома, изменять базовые геометрические и механические характеристики модели и параметры конечно-элементной сетки, а также задавать различные внешние воздействия, связанные с нагрузкой на имитатор кости и компрессией или дистракцией между репонирующими кольцами аппарата Илизарова.

    С использованием разработанных программ на командном языке APDL в конечноэлементном комплексе ANSYS проведены расчеты напряженно-деформированного состояния в зоне перелома при варьировании статических сжимающих нагрузок на имитатор кости, величин перемещений репонирующих колец аппарата Илизарова и жесткостных свойств соединительной ткани костной мозоли на различных этапах сращения перелома (гелеобразной, хрящевой, спонгиозной и нормальной костных тканей). Представленная методология и разработанные программы позволяют проводить оценки допустимых величин внешних нагрузок на костьи величин перемещений репонирующих колец аппарата Илизарова на различных этапах регенерации кости в процессе заживления, исходя из априорно задаваемых критериев допуска на максимальные характеристики напряжений в костной мозоли. Предлагаемые подходы могут бытьиспо льзованы в клинических условиях при планировании, реализации и контроле силовых режимов работы при чрескостном остеосинтезе аппаратом Илизарова.

    Golubev G.S., Kargin M.A., Nasedkin A.V., Rodin M.B.
    Computer analysis of the bone regeneration strength in a model system of osteosynthesis by the Ilizarov fixator with static loads
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 427-440

    The adequate complexity three-dimensional finite element model of biomechanical system with space, shell and beam-type elements was built. The model includes the Ilizarov fixator and tibial bone’s simulator with the regenerating tissue at the fracture location. The proposed model allows us to specify the orthotropic elastic properties of tibial bone model in cortical and trabecular zones. It is also possible to change the basic geometrical and mechanical characteristics of biomechanical system, change the finite element mash density and define the different external loads, such as pressure on the bone and compression or distraction between the repositioned rings of Ilizarov device.

    By using special APDL ANSYS program macros the mode of deformation was calculated in the fracture zone for various static loads on the simulator bone, for compression or distraction between the repositioned rings and for various mechanical properties during different stages of the bone regenerate formation (gelatinous, cartilaginous, trabecular and cortical bone remodeling). The obtained results allow us to estimate the permissible values of the external pressure on the bone and of the displacements of the Ilizarov fixator rings for different stages of the bone regeneration, based on the admittance criterion for the maximum of the stresses in the callus. The presented data can be used in a clinical condition for planning, realization and monitoring of the power modes for transosseous osteosynthesis with the external Ilizarov fixator.

    Просмотров за год: 3.
  4. Ряшко Л.Б., Слепухина Е.С.
    Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468

    Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.

    Ryashko L.B., Slepukhina E.S.
    Analysis of additive and parametric noise effects on Morris – Lecar neuron model
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468

    This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.

    Просмотров за год: 11.
  5. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Bratsun D.A., Lorgov E.S., Poluyanov A.O.
    Repressilator with time-delayed gene expression. Part I. Deterministic description
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259

    The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

    Просмотров за год: 30.
  6. Муратов М.В., Петров И.Б.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

    Muratov M.V., Petrov I.B.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

  7. Бруяка В.А.
    Моделирование течения тонкого слоя жидкости с учетом разрывов и шероховатости границ
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 795-806

    Рассматривается задача о течении жидкости в тонком слое между шероховатыми поверхностями с учетом их сближения и разрывов слоя в местах гребневого контакта микронеровностей. Пространство между поверхностями рассматривается как пористая среда с переменной проницаемостью, зависящей от микропрофиля шероховатости и степени сближения поверхностей. Для получения зависимости проницаемости от сближения поверхностей выполняется расчет течения жидкости на малом участке слоя (100 мкм), для которого микропрофиль шероховатости моделируется с помощью фрактальной функции Вейерштрасса – Мандельброта. Расчетной является трехмерная область, заполняющая пустоты между выступами и впадинами микропрофилей поверхностей, расположенных на некотором расстоянии друг от друга. Сближение поверхностей приводит к тому, что в местах пересечения гребней микронеровностей появляются разрывы расчетной области. При заданном сближении и граничных условиях рассчитывается расход жидкости и перепад давления, на основании которых вычисляется проницаемость эквивалентной пористой среды. Результаты расчетов проницаемости, полученные для различных сближений шероховатых поверхностей, аппроксимированы степенной функцией. Это позволяет рассчитывать характеристики течения в тонком слое переменной толщины, имеющем характерную длину на несколько порядков больше масштабов шероховатости. В качестве примера, иллюстрирующего практическое применение данной методики, получено решение задачи о течении жидкости в зазоре между заготовкой и матрицей при гидропрессовании в трехмерной постановке при условии линейного уменьшения проницаемости эквивалентного пористого слоя.

    In this paper a fluid flow between two close located rough surfaces depending on their location and discontinuity in contact areas is investigated. The area between surfaces is considered as the porous layer with the variable permeability, depending on roughness and closure of surfaces. For obtaining closure-permeability function, the flow on the small region of surfaces (100 $\mu$m) is modeled, for which the surfaces roughness profile created by fractal function of Weierstrass – Mandelbrot. The 3D-domain for this calculation fill out the area between valleys and peaks of two surfaces, located at some distance from each other. If the surfaces get closer, a contacts between roughness peaks will appears and it leads to the local discontinuities in the domain. For the assumed surfaces closure and boundary conditions the mass flow and pressure drop is calculated and based on that, permeability of the equivalent porous layer is evaluated.The calculation results of permeability obtained for set of surfaces closure were approximated by a polynom. This allows us to calculate the actual flow parameters in a thin layer of variable thickness, the length of which is much larger than the scale of the surface roughness. As an example, showing the application of this technique, flow in the gap between the billet and conical die in 3D-formulation is modeled. In this problem the permeability of an equivalent porous layer calculated for the condition of a linear decreased gap.

  8. Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.

    An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.

  9. Конюхов И.В., Конюхов В.М., Черница А.А., Дюсенова А.
    Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636

    Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.

    Konyukhov I.V., Konyukhov V.M., Chernitsa A.A., Dyussenova A.
    Analysis of the physics-informed neural network approach to solving ordinary differential equations
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636

    Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.

  10. Аксёнов А.А., Жлуктов С.В., Шмелев В.В., Жестков М.Н., Рогожкин С.А., Пахолков В.В., Шепелев С.Ф.
    Разработка методики расчетного анализа теплогидравлических процессов в реакторе на быстрых нейтронах с применением кода FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 87-94

    В статье описан подход к расчетному анализу теплогидравлических процессов в реакторе на быстрых нейтронах (БН), включающий применяемые физические модели, численные схемы и упрощения реальной конструкции, принятые в расчетной модели. Рассмотрены стационарные и динамические режимы испытаний. Стационарные режимы имитировали работу реактора на номинальной мощности. Динамические режимы имитировали расхолаживание реактора через систему отвода тепла. Моделирование теплогидравлических процессов проведено в программном комплексе (ПК) FlowVision. На основе геометрической модели была построена математическая модель, описывающая течение теплоносителя в первом контуре имитатора реактора типа БН.

    Моделирование течения и теплообмена рабочего вещества в имитаторе реактора выполнено в предположении независимости плотности вещества от давления, с использованием $k–\varepsilon$ модели турбулентности, с применением модели дисперсной среды и с учетом сопряженного теплообмена. Реализованная в ПК FlowVision модель дисперсной среды позволила учесть процесс теплообмена между контурами в теплообменниках. Из-за большого количества расчетных ячеек по модели активной зоны области двух теплообменных аппаратов были заменены гидравлическими сопротивлениями и стоками тепла.

    Моделирование течения теплоносителя в ПК FlowVision позволило получить распределения температуры, скорости и давления во всей расчетной области. В результате использования модели дисперсной среды были получены распределения температуры теплоносителей по обоим контурам теплообменников. Определено изменение температуры теплоносителя вдоль двух термозондов, которые располагались в холодной и горячей камерах имитатора реактора БН. На основе сравнительного анализа численных и экспериментальных данных сделаны выводы о корректности построенной математической модели и возможности ее использования для моделирования теплогидравлических процессов, протекающих в реакторах с натриевым теплоносителем типа БН.

    Aksenov A.A., Zhluktov S.V., Shmelev V.V., Zhestkov M.N., Rogozhkin S.A., Pakholkov V.V., Shepelev S.F.
    Development of methodology for computational analysis of thermo-hydraulic processes proceeding in fast-neutron reactor with FlowVision CFD software
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 87-94

    An approach to numerical analysis of thermo-hydraulic processes proceeding in a fast-neutron reactor is described in the given article. The description covers physical models, numerical schemes and geometry simplifications accepted in the computational model. Steady-state and dynamic regimes of reactor operation are considered. The steady-state regimes simulate the reactor operation at nominal power. The dynamic regimes simulate the shutdown reactor cooling by means of the heat-removal system.

    Simulation of thermo-hydraulic processes is carried out in the FlowVision CFD software. A mathematical model describing the coolant flow in the first loop of the fast-neutron reactor was developed on the basis of the available geometrical model. The flow of the working fluid in the reactor simulator is calculated under the assumption that the fluid density does not depend on pressure, with use a $k–\varepsilon$ turbulence model, with use of a model of dispersed medium, and with account of conjugate heat exchange. The model of dispersed medium implemented in the FlowVision software allowed taking into account heat exchange between the heat-exchanger lops. Due to geometric complexity of the core region, the zones occupied by the two heat exchangers were modeled by hydraulic resistances and heat sources.

    Numerical simulation of the coolant flow in the FlowVision software enabled obtaining the distributions of temperature, velocity and pressure in the entire computational domain. Using the model of dispersed medium allowed calculation of the temperature distributions in the second loops of the heat exchangers. Besides that, the variation of the coolant temperature along the two thermal probes is determined. The probes were located in the cool and hot chambers of the fast-neutron reactor simulator. Comparative analysis of the numerical and experimental data has shown that the developed mathematical model is correct and, therefore, it can be used for simulation of thermo-hydraulic processes proceeding in fast-neutron reactors with sodium coolant.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.