Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'localization':
Найдено статей: 112
  1. Гибанов Н.С., Шеремет М.А.
    Влияние формы и размеров локального источника энергии на режимы конвективного теплопереноса в квадратной полости
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 271-280

    Проведен численный анализ влияния формы и размеров локального источника постоянной температуры на нестационарные режимы термогравитационной конвекции в квадратной полости с изотермическими вертикальными стенками. Рассматривался источник энергии прямоугольной, треугольной и трапециевидной формы. Краевая задача, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска, была реализована численно методом конечных разностей. Получены распределения изолиний функции тока и температуры, а также временные зависимости для среднего числа Нуссельта на поверхности источника энергии в широком диапазоне изменения определяющих параметров.

    Gibanov N.S., Sheremet M.A.
    Effect of shape and sizes of a local heat source on convective heat transfer in a square cavity
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 271-280

    Numerical analysis of the effects of the local heat source shape on transient natural convection in a square enclosure has been carried out. The local heat source has rectangular, triangular and trapezoidal shape. The boundary value problem formulated in the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation has been solved by means of finite difference method. Distributions of streamlines and isotherms and time dependences for the average Nusselt number along the heat source surface in a wide range of governing parameters have been obtained.

    Просмотров за год: 5. Цитирований: 7 (РИНЦ).
  2. Горшков А.В., Просвиряков Е.Ю.
    Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940

    В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.

    Gorshkov A.V., Prosviryakov Y.Y.
    Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Просмотров за год: 10. Цитирований: 3 (РИНЦ).
  3. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Gasnikov A.V., Kubentayeva M.B.
    Searching stochastic equilibria in transport networks by universal primal-dual gradient method
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345

    We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.

    Просмотров за год: 28.
  4. Представлена математическая модель, описывающая необратимые процессы поляризации и деформирования поликристаллических сегнетоэлектриков во внешних электрических и механических полях большой интенсивности, вследствие чего изменяется внутренняя структура и меняются свойства материала. Необратимые явления моделируются в трехмерной постановке для случая одновременного воздействия электрического поля и механических напряжений. Объектом исследования является представительный объем, в котором исследуются остаточные явления в виде возникающих индуцированных и необратимых частей вектора поляризации и тензора деформации. Основной задачей моделирования является построение определяющих соотношений, связывающих между собой вектор поляризации и тензор деформации, с одной стороны, и вектор электрического поля и тензор механических напряжений, с другой стороны. Рассмотрен общий случай, когда направление электрического поля может не совпадать ни с одним из главных направлений тензора механических напряжений. Для обратимых составляющих определяющие соотношения построены в виде линейных тензорных уравнений, в которых упругие и диэлектрические модули зависят от остаточной деформации, а пьезоэлектрические модули - от остаточной поляризации. Определяющие соотношения для необратимых частей строятся в несколько этапов. Вначале построена вспомогательная модель идеального или безгистерезисного случая, когда все векторы спонтанной поляризации могут поворачиваться в поле внешних сил без взаимного влияния друг на друга. Предложен способ подсчета результирующих значений предельно возможных значений поляризации и деформации идеального случая в виде поверхностных интегралов по единичной сфере с плотностью распределения, полученной из статистического закона Больцмана. Далее сделаны оценки энергетических затрат, необходимых для слома механизмов закрепления доменов, и подсчитана работа внешних полей в реальном и идеальном случаях. На основании этого выведен энергетический баланс и получены определяющие соотношения для необратимых составляющих в виде уравнений в дифференциалах. Разработана схема численного решения этих уравнений для определения текущих значений необратимых искомых характеристик в заданных электрических и механических полях. Для циклических нагрузок построены диэлектрические, деформационные и пьезоэлектрические гистерезисные кривые.

    Разработанная модель может быть имплантирована в конечно-элементный комплекс для расчета неоднородных остаточных полей поляризации и деформирования с последующим определением физических модулей неоднородно поляризованной керамики как локально анизотропного тела.

    Skaliukh A.S.
    Modeling the response of polycrystalline ferroelectrics to high-intensity electric and mechanical fields
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 93-113

    A mathematical model describing the irreversible processes of polarization and deformation of polycrystalline ferroelectrics in external electric and mechanical fields of high intensity is presented, as a result of which the internal structure changes and the properties of the material change. Irreversible phenomena are modeled in a three-dimensional setting for the case of simultaneous action of an electric field and mechanical stresses. The object of the research is a representative volume in which the residual phenomena in the form of the induced and irreversible parts of the polarization vector and the strain tensor are investigated. The main task of modeling is to construct constitutive relations connecting the polarization vector and strain tensor, on the one hand, and the electric field vector and mechanical stress tensor, on the other hand. A general case is considered when the direction of the electric field may not coincide with any of the main directions of the tensor of mechanical stresses. For reversible components, the constitutive relations are constructed in the form of linear tensor equations, in which the modules of elasticity and dielectric permeability depend on the residual strain, and the piezoelectric modules depend on the residual polarization. The constitutive relations for irreversible parts are constructed in several stages. First, an auxiliary model was constructed for the ideal or unhysteretic case, when all vectors of spontaneous polarization can rotate in the fields of external forces without mutual influence on each other. A numerical method is proposed for calculating the resulting values of the maximum possible polarization and deformation values of an ideal case in the form of surface integrals over the unit sphere with the distribution density obtained from the statistical Boltzmann law. After that the estimates of the energy costs required for breaking down the mechanisms holding the domain walls are made, and the work of external fields in real and ideal cases is calculated. On the basis of this, the energy balance was derived and the constitutive relations for irreversible components in the form of equations in differentials were obtained. A scheme for the numerical solution of these equations has been developed to determine the current values of the irreversible required characteristics in the given electrical and mechanical fields. For cyclic loads, dielectric, deformation and piezoelectric hysteresis curves are plotted.

    The developed model can be implanted into a finite element complex for calculating inhomogeneous residual polarization and deformation fields with subsequent determination of the physical modules of inhomogeneously polarized ceramics as a locally anisotropic body.

  5. Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.

    Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

  6. Лубашевский И.А., Лубашевский В.И.
    Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87

    В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.

    В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.

    Lubashevsky I.A., Lubashevskiy V.I.
    Dynamical trap model for stimulus – response dynamics of human control
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 79-87

    We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.

    Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.

  7. Бештоков М.Х.
    Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373

    В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.

    Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  8. Мезенцев Ю.А., Разумникова О.М., Эстрайх И.В., Тарасова И.В., Трубникова О.А.
    Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693

    Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.

    Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.

    В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.

    Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.

    Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.

    Mezentsev Y.A., Razumnikova O.M., Estraykh I.V., Tarasova I.V., Trubnikova O.A.
    Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693

    The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.

    The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.

    In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.

    To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.

    The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.

  9. Константинов Д.В., Бзовски К., Корчунов А.Г., Пьетчшек М.
    Моделирование процессов осесимметричного деформирования с учетом микроструктуры металла
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 897-908

    В статье описано современное состояние вопроса компьютерного моделирования процессов обработки металлов давлением, выделены основные проблемные моменты традиционных методов. Описан метод, позволяющий прогнозировать распределение деформации в объеме деформируемого металла с учетом поведенческих особенностей микроструктуры под воздействием деформационной нагрузки. Представлен способ оптимизации ресурсоемкости мультимасштабных моделей посредством использования статистически эквивалентного репрезентативного объема (SSRVE) микроструктуры. Разработанные методы моделирования апробированы на процессе однократного волочения прутка круглого сечения из стали марки 20. В ходе сравнительного анализа моделей макро- и микроуровней были выявлены различия в количественных показателях напряженно-деформированного состояния (НДС) и их локальном распределении по объему. Микроуровневая модель также позволила обнаружить отсутствующие на макроуровне сжимающие напряжения. Применение концепции SSRVE многократно снизило расчетное время модели при сохранении общей точности.

    Konstantinov D.V., Bzowski K., Korchunov A.G., Pietrzyk M.
    Modeling of axisymmetric deformation processes with taking into account the metal microstructure
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 897-908

    The article describes the state of the art computer simulation in the field of metal forming processes, the main problem points of traditional methods were identified. The method, that allows to predict the deformation distribution in the volume of deformable metal with taking into account of microstructure behavioral characteristics in deformation load conditions, was described. The method for optimizing computational resources of multiscale models by using statistical similar representative volume elements (SSRVE) was presented. The modeling methods were tested on the process of single pass drawing of round rod from steel grade 20. In a comparative analysis of macro and micro levels models differences in quantitative terms of the stress-strain state and their local distribution have been identified. Microlevel model also allowed to detect the compressive stresses and strains, which were absent at the macro level model. Applying the SSRVE concept repeatedly lowered the calculation time of the model while maintaining the overall accuracy.

    Просмотров за год: 9. Цитирований: 1 (РИНЦ).
  10. Фирсов А.А., Яранцев Д.А., Леонов С.Б., Иванов В.В.
    Численное моделирование горения этилена в сверхзвуковом потоке воздуха
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 75-86

    В представленной работе обсуждается возможность упрощенного трехмерного нестационарного моделирования процесса плазменно-стимулированного горения газообразного топлива в сверхзвуковом потоке воздуха. Расчеты проводились в программном комплексе FlowVision. В работе выполнен анализ геометрии эксперимента и сделан вывод о ее существенной трехмерности, связанной как с дискретностью подачи топлива в поток, так и с наличием локализованных плазменных образований. Предложен вариант упрощения расчетной геометрии, основанный на симметрии аэродинамического канала и периодичности пространственных неоднородностей. Выполнено тестирование модифицированной $k–\varepsilon$ модели турбулентности FlowVision (KEFV) в условиях сверхзвукового потока. В этих расчетах в области источников тепла и инжекции топлива использовалась подробная сетка без пристеночных функций, а на удаленных от ключевой области поверхностях пристеночные функции были включены. Это позволило существенно уменьшить количество ячеек расчетной сетки. Сложная задача моделирования воспламенения углеводородного топлива при воздействии плазмы была существенно упрощена путем представления плазменных образований как источников тепла и использования одной брутто-реакции для описания горения топлива. На базе геометрии аэродинамического стенда ИАДТ-50 ОИВТ РАН с помощью моделирования в программном комплексе ПК FlowVision проведены калибровка и параметрическая оптимизация подачи газообразного топлива в сверхзвуковой поток. Продемонстрировано хорошее совпадение экспериментальной и синтетической теневой картины потока при инжекции топлива. Проведено моделирование потока для геометрии камеры сгорания Т131 ЦАГИ с инжекцией топлива и генерацией плазмы. В результате моделирования для заданного набора параметров продемонстрировано воспламенение топлива, что совпало с результатами эксперимента. Отмечена важность адаптации расчетной сетки с повышением пространственного разрешения в области объемных источников тепла, моделирующих зону электрического разряда. Достигнуто удовлетворительное качественное совпадение распределений давления, полученных в моделировании и эксперименте.

    Firsov A.A., Yarantsev D.A., Leonov S.B., Ivanov V.V.
    Numerical simulation of ethylene combustion in supersonic air flow
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86

    In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.

    Просмотров за год: 8. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.