Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Удаление шума из изображений с использованием предлагаемого алгоритма трехчленного сопряженного градиента
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 841-853Алгоритмы сопряженных градиентов представляют собой важный класс алгоритмов безусловной оптимизации с хорошей локальной и глобальной сходимостью и скромными требованиями к памяти. Они занимают промежуточное место между методом наискорейшего спуска и методом Ньютона, поскольку требуют вычисленияи хранения только первых производных и как правило быстрее методов наискорейшего спуска. В данном исследовании рассмотрен новый подход в задаче восстановления изображений. Он наследует одновременно методу сопряженных градиентов Флетчера – Ривза (FR) и трехкомпонентному методу сопряженных градиентов (TTCG), и поэтому назван авторами гибридным трехкомпонентным методом сопряженных градиентов (HYCGM). Новое направление спуска в нем учитывает текущее направления градиента, предыдущее направления спуска и градиент из предыдущей итерации. Показано, что новый алгоритм обладает свойствами глобальной сходимости и монотонности при использовании неточного линейного поиска типа Вулфа при некоторых стандартных предположениях. Для подтверждения эффективности предложенного алгоритма приводятся результаты численных экспериментов предложенного метода в сравнении с классическим методом Флетчера – Ривза (FR) и трехкомпонентным методом Флетчера – Ривза (TTFR).
Noise removal from images using the proposed three-term conjugate gradient algorithm
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).
-
Численное моделирование популяционной 2D-динамики с нелокальным взаимодействием
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 33-40Получены численные решения двумерного реакционно-диффузионного уравнения с нелокальной нелинейностью, описывающие формирование диссипативной структуры. Рассмотрены структуры, возникающие из начальных распределений с одним и несколькими центрами локализации. При изменении параметров уравнения решения описывают формирование расширяющихся кольцевых структур. Рассмотрены особенности образования и взаимодействия расширяющихся кольцеобразных структур в зависимости от характера нелокального взаимодействия.
Ключевые слова: реакционно-диффузионные системы, нелокальные взаимодействия, формирование кольцеобразных диссипативных структур.
Numerical modeling of population 2D-dynamics with nonlocal interaction
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 33-40Просмотров за год: 3. Цитирований: 5 (РИНЦ).Numerical solutions for the two-dimensional reaction-diffusion equation with nonlocal nonlinearity are obtained. The solutions reveal formation of dissipative structures. Structures arising from initial distributions with one and several centers of localization are considered. Formation of extending circular structures is shown. Peculiarities of formation and interaction of extending circular structures depending on nonlocal interaction are considered.
-
О возбуждении солитонов при взаимодействии кинков уравнения синус-Гордона с притягивающей примесью
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 509-520Исследованы аналитически и численно структура и свойства локализованных двух- и трех-кинковых решений уравнения синус-Гордона, возбуждаемых в области притягивающей примеси. Рассмотрены случаи одиночной и двойной пространственно протяженной примеси.
Excitement of solitons in the interaction of kinks of sine-Gordon equation with attracting impurity
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 509-520Цитирований: 5 (РИНЦ).We investigate analytically and numerically the structure and properties of localized two- and three-kink solutions of the sine-Gordon equation, which are excited in the region of the attracting impurity. We have considered cases of single and double spatially extended impurity.
-
Асимптотические решения нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова на больших временах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 543-558Для одномерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова построены асимптотические решения, позволяющие описывать квазистационарные структуры. Построены асимптотические решения динамической системы Эйнштейна–Эренфеста для двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова. Эти решения описывают свойства двумерных структур, локализованных на одномерных многообразиях.
Ключевые слова: нелокальное уравнение Фишера–Колмогорова–Петровского–Пискунова, асимптотическое решение, образование структур, система Эйнштейна–Эренфеста.
Large-time asymptotic solutions of the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 543-558Просмотров за год: 1. Цитирований: 3 (РИНЦ).Asymptotic solutions are constructed for the 1D nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein–Ehrenfest system for the 2D Fisher–Kolmogorov–Petrovskii–Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.
-
Численный анализ конвективно-радиационного теплопереноса в замкнутой воздушной полости с локальным источником энергии
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 383-396Проведено математическое моделирование естественной конвекции и теплового излучения в квадратной замкнутой воздушной полости с изотермическими вертикальными стенками при наличии локального источника энергии постоянной температуры. Математическая модель построена в безразмерных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска и с учетом диатермичности воздушной среды. Получены распределения изолиний функции тока и температуры в широком диапазоне изменения определяющих параметров: число Рэлея $10^3 \leqslant Ra \leqslant 10^6$, приведенная степень черноты ограждающих стенок $0\leqslant\varepsilon < 1$, отношение длины источника энергии к размеру полости $0.2\leqslant l/L\leqslant0.6$ и время $0\leqslantτ\leqslant 100$. Установлены корреляционные соотношения для интегрального коэффициента теплообмена в зависимости от $Ra$, $ε$ и $l/L$.
Ключевые слова: естественная конвекция, поверхностное излучение, локальный источник постоянной температуры, замкнутая полость, математическое моделирование.
Numerical analysis of convective-radiative heat transfer in an air enclosure with a local heat source
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 383-396Просмотров за год: 1. Цитирований: 5 (РИНЦ).Mathematical simulation of natural convection and surface radiation in a square air enclosure having isothermal vertical walls with a local heat source of constant temperature has been carried out. Mathematical model has been formulated on the basis of the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation and diathermancy of air. Distributions of streamlines and isotherms reflecting an effect of Rayleigh number $ 10^3 \leqslant Ra \leqslant 10^6 $, surface emissivity $0 \leqslant ε < 1$, ratio between the length of heat source and the size of enclosure $0.2 \leqslant l/L \leqslant 0.6$ and dimensionless time $0 \leqslant τ \leqslant 100$ on fluid flow and heat transfer have been obtained. Correlations for the average heat transfer coefficient in dependence on $Ra$, $ε$ and $l/L$ have been ascertained.
-
Исследование и редуцирование математической модели химической реакции методом Соболя
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 633-646В работе предложена методика упрощения математической модели химической реакции за счет сокращения числа стадий схемы реакции, основанная на анализе чувствительности целевой функции к изменению параметров модели. Функционал характеризует меру близости расчетных значений по исходной кинетической схеме реакции и схеме, полученной возмущением ее параметров. Преимуществом данной методики является возможность анализа сложных кинетических схем и редуцирования кинетических моделей до размеров, приемлемых с точки зрения точности описания и простоты практического использования. В функционал можно включить результаты вычислительных экспериментов при различных условиях проведения реакции и таким образом получить компактную схему, согласующуюся с детальной схемой для требуемого диапазона условий. Анализ чувствительности функционала модели позволяет выявить те параметры, которые обеспечивают наибольший (или наименьший) вклад на результат моделирования процесса. Математическая модель может содержать параметры, изменение значений которых не влияет на качественное и количественное описание процесса. Вклад таких параметров в значение функционала не будет иметь большого значения. Поэтому стадии, которые не служат для моделирования кинетических кривых веществ, можно исключить из рассмотрения. С применением данной методики была исследована кинетическая схема реакции окисления формальдегида, детальный механизм которой включает в себя 25 стадий и 15 веществ. На основании локального и глобального анализа чувствительности определены наиболее значимые стадии процесса, влияющие на общую динамику изменения концентраций целевых веществ реакции. Получена редуцированная схема модельной реакции окисления формальдегида, которая так же описывает поведение основных веществ реакции, как и детальная схема, но имеет значительно меньшее число стадий реакций. Приведены результаты сравнительного анализа моделирования реакции окисления формальдегида по детальной и редуцированной схемам. В статье приведены вычислительные аспекты решения задач химической кинетики глобальным методом Соболя И.М. на примере данной реакции. Приведены результаты сравнения локальных, глобальных и полных глобальных коэффициентов чувствительности.
Ключевые слова: анализ чувствительности, математическая модель реакции, редуцирование схемы реакции, реакция окисления формальдегида.
Research and reduction of mathematical model of chemical reaction by Sobol’ method
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 633-646Просмотров за год: 10. Цитирований: 4 (РИНЦ).The technique of simplification of mathematical model of a chemical reaction by reducing the number of steps of the reaction scheme, based on an analysis of sensitivity to changes in the objective function of the model parameters, is proposed. The reduced scheme of model reaction of formaldehyde oxidation is received. Functional characterizes the measure of proximity to the calculated values for the initial kinetic reaction scheme and the scheme resulting disturbance of its parameters. The advantage of this technique is the ability to analyze complex kinetic schemes and reduction of kinetic models to a size suitable for practical use. The results of computational experiments under different reaction conditions can be included in the functional and thus to receive the reduce scheme, which is consistent the detailed scheme for the desired range of conditions. Sensitivity analysis of the functional model allows to identify those parameters, which provide the largest (or smallest) the contribution to the result of the process simulation. The mathematical model can contain parameters, which change of values do not affect the qualitative and quantitative description of the process. The contribution of these parameters in the functional value won’t be of great importance. Thus it can be eliminated from consideration, which do not serve for modeling kinetic curves substances. The kinetic scheme of formaldehyde oxidation, the detailed mechanism which includes 25 stages and 15 substances, were investigated using this method. On the basis of the local and global sensitivity analysis, the most important stage of the process that affect the overall dynamics of the target concentrations of the reaction. The reduced scheme of model reaction of formaldehyde oxidation is received. This scheme also describes the behavior of the main substances, as detailed scheme, but has a much smaller number of reaction stages. The results of the comparative analysis of modeling of formaldehyde oxidation on detailed and reduced schemes are given. Computational aspects of the problems of chemical kinetics by Sobol’ global method an example of this reaction are specified. The comparison results are local, global and total sensitivity indices are given.
-
Расчет излучения в ударном слое спускаемого космического аппарата с учетом деталей спектра фотонов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 579-594Расчет переноса излучения в ударном слое космического аппарата вызывает значительные трудности из-за сложной многорезонансной зависимости макросечения поглощения излучения от энергий фотонов. В работе исследована сходимость двух приближенных методов осреднения спектров излучения к точному поточечному (line-by-line) расчету. Первым из приближенных методов является широко используемое многогрупповое приближение, вторым — метод лебеговского осреднения, относящийся к методам сокращения числа расчетных точек спектра за счет объединения точек с равновеликим поглощением. Показано, что с увеличением числа групп метод лебеговского осреднения сходится к точному решению значительно быстрее многогруппового приближения. Оказалось, что 100–150 лебеговых групп достаточно для достижения точности line-by-line-расчета даже в ударном слое в высоких слоях атмосферы, где линии поглощения узки. При этом объем вычислений сокращается более чем на четыре порядка. Выполнена серия расчетов функции распределения излучения в двумерном ударном слое, возникающем при обтекании сферы и затупленного конуса, с использованием приближения локально плоского слоя и метода лебеговского осреднения энергий фотонов. Показано, что излучение ударной волны становится все более сильным при увеличении размера космического аппарата, как в значениях падающего потока энергии на поверхности тела, так и в скорости обмена энергией с газодинамическим потоком, причем не только в точке торможения.
Ключевые слова: перенос энергии излучением, ударный слой, многогрупповое приближение, метод лебеговского осреднения, поточечный расчет спектра, приближение локально плоского слоя.
Calculation of radiation in shockwave layer of a space vehicle taking into account details of photon spectrum
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 579-594Просмотров за год: 8. Цитирований: 1 (РИНЦ).Calculations of radiation transport in the shockwave layer of a descent space vehicle cause essential difficulties due to complex multi-resonance dependence of the absorption macroscopic cross sections from the photon energy. The convergence of two approximate spectrum averaging methods to the results of exact pointwise spectrum calculations is investigated. The first one is the well known multigroup method, the second one is the Lebesgue averaging method belonging to methods of the reduction of calculation points by means of aggregation of spectral points which are characterized by equal absorption strength. It is shown that convergence of the Lebesgue averaging method is significantly faster than the multigroup approach as the number of groups is increased. The only 100–150 Lebesgue groups are required to achieve the accuracy of pointwise calculations even in the shock layer at upper atmosphere with sharp absorption lines. At the same time the number of calculations is reduced by more than four order. Series of calculations of the radiation distribution function in 2D shock layer around a sphere and a blunt cone were performed using the local flat layer approximation and the Lebesgue averaging method. It is shown that the shock wave radiation becomes more significant both in value of the energy flux incident on the body surface and in the rate of energy exchange with the gas-dynamic flow in the case of increasing of the vehicle’s size.
-
Моделирование конвективно-радиационного теплопереноса в дифференциально обогреваемой вращающейся полости
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 195-207Проведено математическое моделирование нестационарных режимов естественной конвекции и поверхностного излучения в замкнутой вращающейся квадратной полости. Рассматриваемая область решения имела две противоположные изотермические стенки, поддерживаемые при постоянных низкой и высокой температурах, остальные стенки являлись адиабатическими. Стенки считались диффузно-серыми. Анализируемая полость вращалась с постоянной угловой скоростью относительно оси, проходящей через центр полости и ориентированной ортогонально области решения. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости» на основе приближений Буссинеска и диатермичности рабочей среды, была реализована численно методом конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А. А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А. А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Разработанный вычислительный код был протестирован на множестве сеток, а также верифицирован путем сопоставления полученных результатов при решении модельной задачи с экспериментальными и численными данными других авторов.
Численные исследования нестационарных режимов естественной конвекции и поверхностного теплового излучения в замкнутой вращающейся полости проведены при следующих значениях безразмерных параметров: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. Все распределения были получены для двадцатого полного оборота полости, когда наблюдается установление периодической картины течения и теплопереноса. В результате анализа установлено, что при малой угловой скорости вращения полости возможна интенсификация течения, а дальнейший рост скорости вращения приводит к ослаблению конвективного течения. Радиационное число Нуссельта незначительно изменяется при варьировании числа Тейлора.
Ключевые слова: естественная конвекция, тепловое поверхностное излучение, диатермичная среда, вращающаяся полость, метод конечных разностей.
Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207Просмотров за год: 20.Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.
Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.
-
Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.
Ключевые слова: метод Ньютона, матрица Гессе, нижние оценки, чебышёвские методы, сверхлинейная сходимость.
A hypothesis about the rate of global convergence for optimal methods (Newton’s type) in smooth convex optimization
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 305-314Просмотров за год: 21. Цитирований: 1 (РИНЦ).In this paper we discuss lower bounds for convergence of convex optimization methods of high order and attainability of this bounds. We formulate a hypothesis that covers all the cases. It is noticeable that we provide this statement without a proof. Newton method is the most famous method that uses gradient and Hessian of optimized function. However, it converges locally even for strongly convex functions. Global convergence can be achieved with cubic regularization of Newton method [Nesterov, Polyak, 2006], whose iteration cost is comparable with iteration cost of Newton method and is equivalent to inversion of Hessian of optimized function. Yu.Nesterov proposed accelerated variant of Newton method with cubic regularization in 2008 [Nesterov, 2008]. R.Monteiro and B. Svaiter managed to improve global convergence of cubic regularized method in 2013 [Monteiro, Svaiter, 2013]. Y.Arjevani, O. Shamir and R. Shiff showed that convergence bound of Monteiro and Svaiter is optimal (cannot be improved by more than logarithmic factor with any second order method) in 2017 [Arjevani et al., 2017]. They also managed to find bounds for convex optimization methods of p-th order for $p ≥ 2$. However, they got bounds only for first and second order methods for strongly convex functions. In 2018 Yu.Nesterov proposed third order convex optimization methods with rate of convergence that is close to this lower bounds and with similar to Newton method cost of iteration [Nesterov, 2018]. Consequently, it was showed that high order methods can be practical. In this paper we formulate lower bounds for p-th order methods for $p ≥ 3$ for strongly convex unconstrained optimization problems. This paper can be viewed as a little survey of state of the art of high order optimization methods.
-
Исследование формирования структур Тьюринга под влиянием волновой неустойчивости
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 397-412Рассматривается классическая для нелинейной динамики модель «брюсселятор», дополненная третьей переменной, играющей роль быстро диффундирующего ингибитора. Модель исследуется в одномерном случае в области параметров, где проявляются два типа диффузионной неустойчивости однородного стационарного состояния системы: волновая неустойчивость, приводящая к самопроизвольному формированию автоволн, и неустойчивость Тьюринга, приводящая к самопроизвольному формированию стационарных диссипативных структур, или структур Тьюринга. Показано, что благодаря субкритическому характеру бифуркации Тьюринга взаимодействие двух неустойчивостей в данной системе приводит к самопроизвольному формированию стационарных диссипативных структур еще до прохождения бифуркации Тьюринга. В ответ на различные случайные шумовые возмущения пространственно-однородного стационарного состояния в исследуемой параметрической области в окрестности точки двойной бифуркации в системе могут устанавливаться различные режимы: как чистые, состоящие только из стационарных или только автоволновых диссипативных структур, так и смешанные, при которых разные режимы проявляются в разных участках расчетного пространства. В рассматриваемой параметрической области система является мультистабильной и проявляет высокую чувствительность к начальным шумовым условиям, что приводит к размытию границ между качественно разными режимами. При этом даже в зоне доминирования смешанных режимов с преобладанием структур Тьюринга значительную вероятность имеет установление чистого автоволнового режима. В случае установившихся смешанных режимов достаточно сильное локальное возмущение в участке расчетного пространства, где проявляется автоволновой режим, может инициировать локальное формирование новых стационарных диссипативных структур. Локальное возмущение стационарного однородного состояния в исследуемой области параметрического пространства приводит к качественно схожей карте устоявшихся режимов, при этом зона доминирования чистых автоволновых режимов расширяется с увеличением амплитуды локального возмущения. В двумерном случае в системе не устанавливаются смешанные режимы. При эволюции системы в случае появления локальных структур Тьюринга под воздействием автоволнового режима со временем они заполняют все расчетное пространство.
Investigation of Turing structures formation under the influence of wave instability
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 397-412Просмотров за год: 21.A classical for nonlinear dynamics model, Brusselator, is considered, being augmented by addition of a third variable, which plays the role of a fast-diffusing inhibitor. The model is investigated in one-dimensional case in the parametric domain, where two types of diffusive instabilities of system’s homogeneous stationary state are manifested: wave instability, which leads to spontaneous formation of autowaves, and Turing instability, which leads to spontaneous formation of stationary dissipative structures, or Turing structures. It is shown that, due to the subcritical nature of Turing bifurcation, the interaction of two instabilities in this system results in spontaneous formation of stationary dissipative structures already before the passage of Turing bifurcation. In response to different perturbations of spatially uniform stationary state, different stable regimes are manifested in the vicinity of the double bifurcation point in the parametric region under study: both pure regimes, which consist of either stationary or autowave dissipative structures; and mixed regimes, in which different modes dominate in different areas of the computational space. In the considered region of the parametric space, the system is multistable and exhibits high sensitivity to initial noise conditions, which leads to blurring of the boundaries between qualitatively different regimes in the parametric region. At that, even in the area of dominance of mixed modes with prevalence of Turing structures, the establishment of a pure autowave regime has significant probability. In the case of stable mixed regimes, a sufficiently strong local perturbation in the area of the computational space, where autowave mode is manifested, can initiate local formation of new stationary dissipative structures. Local perturbation of the stationary homogeneous state in the parametric region under investidation leads to a qualitatively similar map of established modes, the zone of dominance of pure autowave regimes being expanded with the increase of local perturbation amplitude. In two-dimensional case, mixed regimes turn out to be only transient — upon the appearance of localized Turing structures under the influence of wave regime, they eventually occupy all available space.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"