Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'kinetic models':
Найдено статей: 54
  1. Курушина С.Е., Шаповалова Е.А.
    Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607

    В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.

    Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.

    В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.

    Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.

    Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.

    Kurushina S.E., Shapovalova E.A.
    Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607

    We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.

    We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.

    In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.

    Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.

    Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.

    Просмотров за год: 7.
  2. Кривовичев Г.В.
    Кинетические уравнения для моделирования диффузионных процессов методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 919-936

    В работе рассмотрена система линейных кинетических уравнений с релаксационным членом типа Бхатнагара–Гросса–Крука для моделирования линейных диффузионных процессов с помощью метода решеточных уравнений Больцмана. Коэффициенты системы зависят от дискретных скоростей, определяемых точками шаблона, построенного в пространстве скоростей частиц. Система может рассматриваться как альтернативная математическая модель для описания диффузионного процесса. Рассматривается несколько случаев базовых шаблонов в пространстве скоростей частиц. Рассмотрены случаи зависящих от параметра коэффициентов. С использованием асимптотического метода Чепмена–Энскога показано, что система может быть сведена к линейному уравнению диффузии, а также получено выражение для коэффициента диффузии. Как результат анализа полученного выражения показано, что решения, получаемые по решеточным уравнениям Больцмана, обладают численной диффузией. Анализ устойчивости проводится посредством исследования волновых мод, допускаемых решениями гиперболической системы уравнений. Для случаев других шаблонов предложен алгоритм численного исследования устойчивости. В результате расчетов показано, что решения системы являются устойчивыми в широком диапазоне входных параметров. Показан достаточный характер физически допустимого условия положительности времени релаксации как условия устойчивости. Посредством аналитических, а также численных исследований показано, что решения в виде волновых мод обладают дисперсией, не типичной для решений линейного уравнения диффузии. Но при этом свойственные дисперсии искажения волнового пакета будут демпфироваться из-за наличия асимптотической устойчивости и в целом поведение решения близко к решению уравнения диффузии. Разностные схемы для построенной системы, помимо моделирования диффузии, могут быть использованы при решении стационарных задач методом установления и в методе расщепления для расчетов течений вязкой жидкости. Полученные результаты могут оказаться полезными при сравнении друг с другом теоретических свойств различных разностных схем метода решеточных уравнений Больцмана для численного моделирования диффузии.

    Krivovichev G.V.
    Kinetic equations for modelling of diffusion processes by lattice Boltzmann method
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 919-936

    The system of linear hyperbolic kinetic equations with the relaxation term of Bhatnagar–Gross–Krook type for modelling of linear diffusion processes by the lattice Boltzmann method is considered. The coefficients of the equations depend on the discrete velocities from the pattern in velocity space. The system may be considered as an alternative mathematical model of the linear diffusion process. The cases of widely-used patterns on speed variables are considered. The case of parametric coefficients takes into account. By application of the method of Chapman–Enskog asymptotic expansion it is obtained, that the system may be reduced to the linear diffusion equation. The expression of the diffusion coefficient is obtained. As a result of the analysis of this expression, the existence of numerical diffusion in solutions obtained by application of lattice Boltzmann equations is demonstrated. Stability analysis is based on the investigation of wave modes defined by the solutions of hyperbolic system. In the cases of some one-dimensional patterns stability analysis may be realized analytically. In other cases the algorithm of numerical stability investigation is proposed. As a result of the numerical investigation stability of the solutions is shown for a wide range of input parameters. The sufficiency of the positivity of the relaxation parameter for the stability of solutions is demonstrated. The dispersion of the solutions, which is not realized for a linear diffusion equation, is demonstrated analytically and numerically for a wide range of the parameters. But the dispersive wave modes can be damped as an asymptotically stable solutions and the behavior of the solution is similar to the solution of linear diffusion equation. Numerical schemes, obtained from the proposed systems by various discretization techniques may be considered as a tool for computer modelling of diffusion processes, or as a solver for stationary problems and in applications of the splitting lattice Boltzmann method. Obtained results may be used for the comparison of the theoretical properties of the difference schemes of the lattice Boltzmann method for modelling of linear diffusion.

    Просмотров за год: 25.
  3. Пескова Е.Е., Снытников В.Н., Жалнин Р.В.
    Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1169-1187

    Разработан вычислительный алгоритм для изучения химических процессов во внутренних течениях многокомпонентного газа при воздействии лазерного излучения. Математическая модель представляет собой уравнения газовой динамики с химическими реакциями при малых числах Маха с учетом диссипативных членов, которые описывают динамику вязкой теплопроводной среды с диффузией, химическими реакциями и подводом энергии посредством лазерного излучения. Для данной математической модели характерно наличие нескольких сильно различающихся между собой временных и пространственных масштабов. Вычислительный алгоритм построен на основе схемы расщепления по физическим процессам. Каждый шаг интегрирования по времени разбивается на следующие блоки: решение уравнений химической кинетики, решение уравнения для интенсивности излучения, решение уравнений конвекции – диффузии, расчет динамической составляющей давления и расчет коррекции вектора скорости. Решение жесткой системы уравнений химической кинетики проводится с помощью специализированной явной схемы второго порядка точности или подключаемым модулем RADAU5. Для нахождения конвективных членов в уравнениях применяются численные потоки Русанова и WENO-схема повышенного порядка аппроксимации. На основе полученного алгоритма разработан код с использованием технологии параллельных вычислений MPI. Созданный код использован для расчетов пиролиза этана с радикальными реакциями. Детально изучается формирование сверхравновесных концентраций радикалов по объему реактора. Проведено численное моделирование течения реакционного газа в плоской трубе с подводом лазерного излучения, востребованное для интерпретации экспериментальных результатов. Показано, что лазерное излучение увеличивает в разы конверсию этана и выходы целевых продуктов на коротких длинах ближе к входу в реакционную зону. Сокращение эффективной длины реакционной зоны позволяет предложить новые решения при проектировании реакторов конверсии этана в ценные углеводороды. Разработанные алгоритм и программа найдут свое применение в создании новых технологий лазерной термохимии.

    Peskova E.E., Snytnikov V.N., Zhalnin R.V.
    The computational algorithm for studying internal laminar flows of a multicomponent gas with different-scale chemical processes
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1169-1187

    The article presented the computational algorithm developed to study chemical processes in the internal flows of a multicomponent gas under the influence of laser radiation. The mathematical model is the gas dynamics’ equations with chemical reactions at low Mach numbers. It takes into account dissipative terms that describe the dynamics of a viscous heat-conducting medium with diffusion, chemical reactions and energy supply by laser radiation. This mathematical model is characterized by the presence of several very different time and spatial scales. The computational algorithm is based on a splitting scheme by physical processes. Each time integration step is divided into the following blocks: solving the equations of chemical kinetics, solving the equation for the radiation intensity, solving the convection-diffusion equations, calculating the dynamic component of pressure and calculating the correction of the velocity vector. The solution of a stiff system of chemical kinetics equations is carried out using a specialized explicit second-order accuracy scheme or a plug-in RADAU5 module. Numerical Rusanov flows and a WENO scheme of an increased order of approximation are used to find convective terms in the equations. The code based on the obtained algorithm has been developed using MPI parallel computing technology. The developed code is used to calculate the pyrolysis of ethane with radical reactions. The superequilibrium concentrations’ formation of radicals in the reactor volume is studied in detail. Numerical simulation of the reaction gas flow in a flat tube with laser radiation supply is carried out, which is in demand for the interpretation of experimental results. It is shown that laser radiation significantly increases the conversion of ethane and yields of target products at short lengths closer to the entrance to the reaction zone. Reducing the effective length of the reaction zone allows us to offer new solutions in the design of ethane conversion reactors into valuable hydrocarbons. The developed algorithm and program will find their application in the creation of new technologies of laser thermochemistry.

  4. Ситников С.С., Черемисин Ф.Г.
    Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123

    В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.

    Sitnikov S.S., Tcheremissine F.G.
    Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123

    In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.

  5. Колдоба А.В., Скалько Ю.И.
    Численное моделирование распространения прямоточных волн внутрипластового горения в инверсном режиме
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 993-1006

    Одной из перспективных технологий повышения нефтеотдачи при разработке нетрадиционных нефтяных пластов является метод термогазового воздействия. Метод основан на закачке в пласт кислородосодержащей смеси и ее трансформации в высокоэффективный смешивающийся с пластовой нефтью вытесняющий агент за счет самопроизвольных внутрипластовых окислительных процессов. В ряде случаев этот метод обладает большим потенциалом по сравнению с другими способами повышения нефтеотдачи. В данной работе рассматриваются некоторые вопросы распространения волн внутрипластового горения. В зависимости от параметров коллектора и закачиваемой смеси такие волны могут распространяться в различных режимах. В данной работе рассматривается только прямоточный инверсный режим распространения. В этом режиме волна горения распространяется в направлении течения окислителя и фронт реакции отстает от тепловой волны, в которой вещество (углеводородные фракции, пористый скелет и др.) прогреваются до температур, достаточных для протекания реакции окисления. В работе представлены результаты аналитического исследования и численного моделирования структуры инверсной волны внутрипластового горения при двухфазном течении в пористом слое. Сделаны упрощающие предположения о теплофизических свойствах флюидных фаз, которые позволяют, с одной стороны, сделать модель внутрипластового горения обозримой для анализа, а с другой — передать основные особенности этого процесса. Рассмотрено решение типа «бегущая волна» и указаны условия его реализации. Выделено два режима распространения инверсных волн внутрипластового горения: гидродинамический и кинетический. Численное моделирование распространения волны внутрипластового горения проводилось с помощью термогидродинамического симулятора, разработанного для численного интегрирования неизотермических многокомпонентных фильтрационных течений, сопровождающихся фазовыми переходами и химическими реакциями.

    Koldoba A.V., Skalko Y.I.
    Numerical simulation of inverse mode propagation in-situ combustion direct-flow waves
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 993-1006

    One of the promising technologies for enhanced oil recovery in the development of unconventional oil reservoirs is the thermo-gas method. The method is based on the injection of an oxygen-containing mixture into the formation and its transformation into a highly efficient displacing agent miscible with the formation of oil due to spontaneous in-situ oxidative processes. In some cases, this method has great potential compared to other methods of enhanced oil recovery. This paper discusses some issues of the propagation of in-situ combustion waves. Depending on the parameters of the reservoir and the injected mixture, such waves can propagate in different modes. In this paper, only the direct-flow inverse propagation mode is considered. In this mode, the combustion wave propagates in the direction of the oxidant flow and the reaction front lags behind the heatwave, in which the substance (hydrocarbon fractions, porous skeleton, etc.) is heated to temperatures sufficient for the oxidation reaction to occur. The paper presents the results of an analytical study and numerical simulation of the structure of the inverse wave of in-situ combustion. in two-phase flow in a porous layer. Some simplifying assumptions about the thermal properties of fluid phases was accepted, which allow, on the one hand, to modify the in-situ combustion model observable for analysis, and with another is to convey the main features of this process. The solution of the “running wave” type is considered and the conditions of its implementation are specified. Selected two modes of reaction trailing front regime in-situ combustion waves: hydrodynamic and kinetic. Numerical simulation of the in-situ combustion wave propagation was carried out with using the thermohydrodynamical simulator developed for the numerical integration of non-isothermal multicomponent filtration flows accompanied by phase transitions and chemical reaction.

  6. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  7. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  8. Горшков А.В., Просвиряков Е.Ю.
    Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940

    В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.

    Gorshkov A.V., Prosviryakov Y.Y.
    Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Просмотров за год: 10. Цитирований: 3 (РИНЦ).
  9. Андреева А.А., Николаев А.В., Лобанов А.И.
    Исследование точечной математической модели полимеризации фибрина
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 247-258

    Функциональное моделирование процессов свертывания крови, в частности возникновения фибрин–полимерных сгустков, имеет большое значение для прикладных вопросов медицинской биофизики. Несмотря на некоторые неточности в математических моделях, качественные результаты представляют огромный интерес для экспериментаторов как средство анализа возможных вариантов развития их работ. При достижении хорошего количественного совпадения с экспериментальными результатами такие модели могут быть использованы для технологических применений. Целью данной работы является моделирование процесса многоступенчатой полимеризации фибрина и сопряженного с ними золь-гель-перехода — возникновения фибрин-полимерной сетки в точечной системе. Для программной реализации и численных экспериментов используется неявный метод Розенброка второго порядка с комплексными коэффициентами (CROS). В работе представлены результаты моделирования и проведен анализ чувствительности численных решений к коэффициентам математической модели методами вариации. Показано, что в физиологическом диапазоне параметров констант модели существует лаг-период 20 секунд между началом реакции и возникновением зародышей фибрин-полимерной сетки, что хорошо соответствует экспериментальным наблюдениям подобных систем. Показана возможность появления нескольких $(n = 1–3)$ последовательных золь-гель-переходов. Такое необычное поведение системы является прямым следствием наличия нескольких фаз в процессе полимеризации фибрина. На последнем этапе раствор олигомеров фибрина длины 10 может достичь полуразбавленного состояния. Это, в свою очередь, приведет к исключительно быстрой кинетике формирования фибрин-полимерной сетки, управляемой вращательной диффузией олигомеров. Если же состояние полуразбавленного раствора не достигается, то образование фибрин-полимерной сетки контролируется трансляционной диффузией, которая является существенно более медленным процессом. Такой дуализм в процессе золь-гель-перехода привел к необходимости введения функции переключения в уравнения для кинетики образования фибрин-полимера. Ситуация с последовательными золь-гель-переходами соответствует экспериментальным системам, где вследствие физических процессов, таких как пресипитация, фибрин-полимерная сетка может быть быстро удалена из объема.

    Andreeva A.A., Nikolaev A.V., Lobanov A.I.
    Analysis of point model of fibrin polymerization
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 247-258

    Functional modeling of blood clotting and fibrin-polymer mesh formation is of a significant value for medical and biophysics applications. Despite the fact of some discrepancies present in simplified functional models their results are of the great interest for the experimental science as a handy tool of the analysis for research planning, data processing and verification. Under conditions of the good correspondence to the experiment functional models can be used as an element of the medical treatment methods and biophysical technologies. The aim of the paper in hand is a modeling of a point system of the fibrin-polymer formation as a multistage polymerization process with a sol-gel transition at the final stage. Complex-value Rosenbroke method of second order (CROS) used for computational experiments. The results of computational experiments are presented and discussed. It was shown that in the physiological range of the model coefficients there is a lag period of approximately 20 seconds between initiation of the reaction and fibrin gel appearance which fits well experimental observations of fibrin polymerization dynamics. The possibility of a number of the consequent $(n = 1–3)$ sol-gel transitions demonstrated as well. Such a specific behavior is a consequence of multistage nature of fibrin polymerization process. At the final stage the solution of fibrin oligomers of length 10 can reach a semidilute state, leading to an extremely fast gel formation controlled by oligomers’ rotational diffusion. Otherwise, if the semidilute state is not reached the gel formation is controlled by significantly slower process of translational diffusion. Such a duality in the sol-gel transition led authors to necessity of introduction of a switch-function in an equation for fibrin-polymer formation kinetics. Consequent polymerization events can correspond to experimental systems where fibrin mesh formed gets withdrawn from the volume by some physical process like precipitation. The sensitivity analysis of presented system shows that dependence on the first stage polymerization reaction constant is non-trivial.

    Просмотров за год: 8.
  10. Старостин И.Е., Быков В.И.
    К проблеме программной реализации потенциально-потокового метода описания физико-химических процессов
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 817-832

    В рамках современной неравновесной термодинамики (макроскопического подхода описания и математического моделирования динамики реальных физико-химических процессов) авторами был разработан потенциально-потоковый метод описания и математического моделирования этих процессов, применимый в общем случае реальных макроскопических физико-химических систем. В соответствии с этим методом описание и математическое моделирование этих процессов заключаются в определении через потенциалы взаимодействия термодинамических сил, движущих эти процессы, и кинетической матрицы, определяемой кинетическими свойствами рассматриваемой системы, которые, в свою очередь, определяют динамику протекания физико-химических процессов в этой системе под действием термо-динамических сил в ней. Зная термодинамические силы и кинетическую матрицу системы, определяются скорости протекания физико-химических процессов в системе, а через эти скорости согласно законам сохранения определяются скорости изменения ее координат состояния. Получается, таким образом, замкнутая система уравнений физико-химических процессов в системе. Зная потенциалы взаимодействия в системе, кинетические матрицы ее простых подсистем (отдельных процессов, сопряженных между собой и не сопряженных с другими процессами), коэффициенты, входящие в законы сохранения, начальное состояние рассматриваемой системы, внешние потоки в нее, можно получить полную динамику физико-химических процессов в этой системе. Однако в случае сложной физико-химической системы, в которой протекает большое количество физико-химических процессов, размерность системы уравнений этих процессов становится соответствующей. Отсюда возникает проблема автоматизации формирования описанной системы уравнений динамики физико-химических процессов в рассматриваемой системе. В настоящей статье разрабатывается архитектура библиотеки программных типов данных, реализующих заданную пользователем физико-химическую систему на уровне ее расчетной схемы (координат состояния системы, энергетических степеней свободы, физико-химических процессов, в ней протекающих, внешних потоков и взаимосвязи между этими перечисленными компонентами) и алгоритмов задания ссылок в этих типах данных, а также расчета описанных параметров системы.

    Starostin I.E., Bykov V.I.
    To the problem of program implementation of the potential-streaming method of description of physical and chemical process
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 817-832

    In the framework of modern non-equilibrium thermodynamics (macroscopic approach of description and mathematical modeling of the dynamics of real physical and chemical processes), the authors developed a potential- flow method for describing and mathematical modeling of real physical and chemical processes applicable in the general case of real macroscopic physicochemical systems. In accordance with the potential-flow method, the description and mathematical modeling of these processes consists in determining through the interaction potentials of the thermodynamic forces driving these processes and the kinetic matrix determined by the kinetic properties of the system in question, which in turn determine the dynamics of the course of physicochemical processes in this system under the influence of the thermodynamic forces in it. Knowing the thermodynamic forces and the kinetic matrix of the system, the rates of the flow of physicochemical processes in the system are determined, and according to these conservation laws the rates of change of its state coordinates are determined. It turns out in this way a closed system of equations of physical and chemical processes in the system. Knowing the interaction potentials in the system, the kinetic matrices of its simple subsystems (individual processes that are conjugate to each other and not conjugate with other processes), the coefficients entering into the conservation laws, the initial state of the system under consideration, external flows into the system, one can obtain a complete dynamics of physicochemical processes in the system. However, in the case of a complex physico-chemical system in which a large number of physicochemical processes take place, the dimension of the system of equations for these processes becomes appropriate. Hence, the problem arises of automating the formation of the described system of equations of the dynamics of physical and chemical processes in the system under consideration. In this article, we develop a library of software data types that implement a user-defined physicochemical system at the level of its design scheme (coordinates of the state of the system, energy degrees of freedom, physico-chemical processes, flowing, external flows and the relationship between these listed components) and algorithms references in these types of data, as well as calculation of the described system parameters. This library includes both program types of the calculation scheme of the user-defined physicochemical system, and program data types of the components of this design scheme (coordinates of the system state, energy degrees of freedom, physicochemical processes, flowing, external flows). The relationship between these components is carried out by reference (index) addressing. This significantly speeds up the calculation of the system characteristics, because faster access to data.

    Просмотров за год: 12.
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.