Текущий выпуск Номер 1, 2021 Том 13
Результаты поиска по 'kNN-алгоритм':
Найдено статей: 1
  1. Алёшин И.М., Малыгин И.В.
    Интерпретация результатов радиоволнового просвечивания методами машинного обучения
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 675-684

    В настоящий момент значительно возросла глубина работ по разведке кимберлитовых тел и рудных месторождений. Традиционные геологические методы поиска оказались неэффективными. Практически единственным прямым методом поиска является бурение системы скважин до глубин, которые обеспечивают доступ к вмещающим породам. Из-за высокой стоимости бурения возросла роль межскважинных методов. Они позволяют увеличить среднее расстояние между скважинами без существенного снижения вероятности пропуска кимберлитового или рудного тела. Метод радиоволнового просвечивания особенно эффективен при поиске объектов, отличающихся высокой контрастностью электропроводящих свойств. Физическую основу метода составляет зависимость распространения электромагнитной волны от проводящих свойств среды распространения. Источником и приемником электромагнитного излучения является электрический диполь. При измерениях они размещаются в соседних скважинах. Расстояние между источником и приемником известно. Поэтому, измерив величину уменьшения амплитуды электромагнитной волны при ее распространении между скважинами, можно оценить коэффициент поглощения среды. Породе с низким электрическим сопротивлением соответствует высокое поглощение радиоволн. Поэтому данные межскважинных измерений позволяют оценить эффективное электрическое сопротивление породы. Обычно источник и приемник синхронно погружаются в соседние скважины. Измерение величины амплитуды электрического поля в приемнике позволяет оценить среднее значение коэффициента затухания на линии, соединяющей источник и приемник. Измерения проводятся во время остановок, приблизительно каждые 5 м. Расстояние между остановками значительно меньше расстояния между соседними скважинами. Это приводит к значительной пространственной анизотропии в распределении данных. При проведении разведочного бурения скважины покрывают большую площадь. Наша цель состоит в построении трехмерной модели распределения электрических свойств межскважинного пространства на всем участке по результатом совокупности измерений. Анизотропия пространственного распределения измерений препятствует использованию стандартных методов геостатистики. Для построения трехмерной модели коэффициента затухания мы использовали один из методов теории машинного обучения — метод ближайших соседей. В этом методе коэффициент поглощения в заданной точке определяется его значениями для $k$ ближайших измерений. Число $k$ определяется из дополнительных соображений. Влияния анизотропии пространственного распределения измерений удается избежать, изменив пространственный масштаб в горизонтальном направлении. Масштабный множитель $\lambda$ является еще одним внешним параметром задачи. Для выбора значений параметров $k$ и $\lambda$ мы использовали коэффициент детерминации. Для демонстрации процедуры построения трехмерного образа коэффициента поглощения мы воспользовались данными межскважинного радиоволнового просвечивания, полученные на одном из участков в Якутии.

    Aleshin I.M., Malygin I.V.
    Machine learning interpretation of inter-well radiowave survey data
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 675-684

    Traditional geological search methods going to be ineffective. The exploration depth of kimberlite bodies and ore deposits has increased significantly. The only direct exploration method is to drill a system of wells to the depths that provide access to the enclosing rocks. Due to the high cost of drilling, the role of inter-well survey methods has increased. They allows to increase the mean well spacing without significantly reducing the kimberlite or ore body missing probability. The method of inter-well radio wave survey is effective to search for high contrast conductivity objects. The physics of the method based on the dependence of the electromagnetic wave propagation on the propagation medium conductivity. The source and receiver of electromagnetic radiation is an electric dipole, they are placed in adjacent wells. The distance between the source and receiver is known. Therefore we could estimate the medium absorption coefficient by the rate of radio wave amplitude decrease. Low electrical resistance rocks corresponds to high absorption of radio waves. The inter-well measurement data allows to estimate an effective electrical resistance (or conductivity) of the rock. Typically, the source and receiver are immersed in adjacent wells synchronously. The value of the of the electric field amplitude measured at the receiver site allows to estimate the average value of the attenuation coefficient on the line connecting the source and receiver. The measurements are taken during stops, approximately every 5 m. The distance between stops is much less than the distance between adjacent wells. This leads to significant spatial anisotropy in the measured data distribution. Drill grid covers a large area, and our point is to build a three-dimensional model of the distribution of the electrical properties of the inter-well space throughout the whole area. The anisotropy of spatial distribution makes hard to the use of standard geostatistics approach. To build a three-dimensional model of attenuation coefficient, we used one of machine learning theory methods, the method of nearest neighbors. In this method, the value of the absorption coefficient at a given point is calculated by $k$ nearest measurements. The number $k$ should be determined from additional reasons. The spatial distribution anisotropy effect can be reduced by changing the spatial scale in the horizontal direction. The scale factor $\lambda$ is one yet external parameter of the problem. To select the parameters $k$ and $\lambda$ values we used the determination coefficient. To demonstrate the absorption coefficient three-dimensional image construction we apply the procedure to the inter-well radio wave survey data. The data was obtained at one of the sites in Yakutia.

    Просмотров за год: 3.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus