Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обучение и оценка обобщающей способности методов интерполяции
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1023-1031В данной статье исследуются методы машинного обучения с определенным видом решающего правила. К ним относятся интерполяция по методу обратно взвешенных расстояний, метод интерполяции радиальными базисными функциями, метод многомерной интерполяции и аппроксимации на основе теории случайных функций, кригинг. Показано, что для данных методов существует способ быстрого переобучения «модели» при добавлении новых данных к существующим. Под «моделью» понимается построенная по обучающим данным интерполирующая или аппроксимирующая функция. Данный подход позволяет уменьшить вычислительную сложность построения обновленной «модели» с $O(n^3)$ до $O(n^2)$. Также будет исследована возможность быстрого оценивания обобщающих возможностей «модели» на обучающей выборке при помощи метода скользящего контроля leave-one-out cross-validation, устранив главный недостаток такого подхода — необходимость построения новой «модели» при каждом удалении элемента из обучающей выборки.
Ключевые слова: машинное обучение, интерполяция, случайная функция, система линейных уравнений, кросс-валидация.
Training and assessment the generalization ability of interpolation methods
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1023-1031Просмотров за год: 7. Цитирований: 5 (РИНЦ).We investigate machine learning methods with a certain kind of decision rule. In particular, inverse-distance method of interpolation, method of interpolation by radial basis functions, the method of multidimensional interpolation and approximation, based on the theory of random functions, the last method of interpolation is kriging. This paper shows a method of rapid retraining “model” when adding new data to the existing ones. The term “model” means interpolating or approximating function constructed from the training data. This approach reduces the computational complexity of constructing an updated “model” from $O(n^3)$ to $O(n^2)$. We also investigate the possibility of a rapid assessment of generalizing opportunities “model” on the training set using the method of cross-validation leave-one-out cross-validation, eliminating the major drawback of this approach — the necessity to build a new “model” for each element which is removed from the training set.
-
Сокращение вида решающего правила метода многомерной интерполяции и аппроксимации в задаче классификации данных
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 475-484В данной статье исследуется метод машинного обучения на основе теории случайных функций. Одной из основных проблем данного метода является то, что вид решающего правила модели метода, построенной на данных обучающей выборки, становится более громоздким при увеличении количества примеров выборки. Решающее правило модели является наиболее вероятной реализацией случайной функции и представляется в виде многочлена с количеством слагаемых, равным количеству обучающих элементов выборки. В статье будет показано, что для рассматриваемого метода существует быстрый способ сокращения обучающей выборки и, соответственно, вида решающего правила. Уменьшение примеров обучающей выборки происходит за счет поиска и удаления малоинформативных (слабых) элементов, которые незначительно влияют на итоговый вид решающей функции, и шумовых элементов выборки. Для каждого $(x_i,y_i)$-го элемента выборки было введено понятие значимости, выражающееся величиной отклонения оцененного значения решающей функции модели в точке $x_i$, построенной без $i$-го элемента, от реального значения $y_i$. Будет показана возможность косвенного использования найденных слабых элементов выборки при обучении модели метода, что позволяет не увеличивать количество слагаемых в полученной решающей функции. Также в статье будут описаны проведенные эксперименты, в которых показано, как изменение количества обучающих данных влияет на обобщающую способность решающего правила модели в задаче классификации.
Ключевые слова: машинное обучение, интерполяция, аппроксимация, случайная функция, система линейных уравнений, скользящий контроль, классификация.
Reduction of decision rule of multivariate interpolation and approximation method in the problem of data classification
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 475-484Просмотров за год: 5.This article explores a method of machine learning based on the theory of random functions. One of the main problems of this method is that decision rule of a model becomes more complicated as the number of training dataset examples increases. The decision rule of the model is the most probable realization of a random function and it's represented as a polynomial with the number of terms equal to the number of training examples. In this article we will show the quick way of the number of training dataset examples reduction and, accordingly, the complexity of the decision rule. Reducing the number of examples of training dataset is due to the search and removal of weak elements that have little effect on the final form of the decision function, and noise sampling elements. For each $(x_i,y_i)$-th element sample was introduced the concept of value, which is expressed by the deviation of the estimated value of the decision function of the model at the point $x_i$, built without the $i$-th element, from the true value $y_i$. Also we show the possibility of indirect using weak elements in the process of training model without increasing the number of terms in the decision function. At the experimental part of the article, we show how changed amount of data affects to the ability of the method of generalizing in the classification task.
-
Разностная схема для решения задач гидродинамики при больших сеточных числах Пекле
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 833-848В работе рассматриваются развитие и применение метода учета заполненности прямоугольных ячеек материальной средой, в частности жидкостью для повышения гладкости и точности конечно-разностного решения задач гидродинамики со сложной формой граничной поверхности. Для исследования возможностей предлагаемых разностных схем рассмотрены две задачи вычислительной гидродинамики — пространственно-двумерного течения вязкой жидкости между двумя соосными полуцилиндрами и переноса веществ между соосными полуцилиндрами. Аппроксимация задач по времени выполнена на основе схем расщепления по физическим процессам. Дискретизация операторов диффузии и конвекции выполнена на основе интегроинтерполяционного метода с учетом заполненности ячеек и без ее учета. Для решения задачи диффузии – конвекции при больших сеточных числах Пекле предложено использовать разностную схему, учитывающую функцию заполненности ячеек, и схему, построенную на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами, полученными в результате минимизации погрешности аппроксимации при малых числах Куранта. Для оценки точности численного решения в качестве эталона используется аналитическое решение, описывающее течение Куэтта – Тейлора. В случае непосредственного использования прямоугольных сеток (ступенчатой аппроксимации границ) относительная погрешность расчетов достигает 70 %, при тех же условиях использование предлагаемого метода позволяет уменьшить погрешность до 6%. Показано, что дробление прямоугольной сетки в 2–8 раз по каждому из пространственных направлений не приводит к такому же повышению точности, которой обладают численные решения, полученные с учетом заполненности ячеек. Предложенные разностные схемы, построенные на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами 2/3 и 1/3 соответственно, полученные в результате минимизации порядка погрешности аппроксимации, для задачи диффузии – конвекции обладают меньшей сеточной вязкостью и, как следствие, точнее описывают поведение решения в случае больших сеточных чисел Пекле.
Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 833-848The paper discusses the development and application of the accounting rectangular cell fullness method with material substance, in particular, a liquid, to increase the smoothness and accuracy of a finite-difference solution of hydrodynamic problems with a complex shape of the boundary surface. Two problems of computational hydrodynamics are considered to study the possibilities of the proposed difference schemes: the spatial-twodimensional flow of a viscous fluid between two coaxial semi-cylinders and the transfer of substances between coaxial semi-cylinders. Discretization of diffusion and convection operators was performed on the basis of the integro-interpolation method, taking into account taking into account the fullness of cells and without it. It is proposed to use a difference scheme, for solving the problem of diffusion – convection at large grid Peclet numbers, that takes into account the cell population function, and a scheme on the basis of linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients obtained by minimizing the approximation error at small Courant numbers. As a reference, an analytical solution describing the Couette – Taylor flow is used to estimate the accuracy of the numerical solution. The relative error of calculations reaches 70% in the case of the direct use of rectangular grids (stepwise approximation of the boundaries), under the same conditions using the proposed method allows to reduce the error to 6%. It is shown that the fragmentation of a rectangular grid by 2–8 times in each of the spatial directions does not lead to the same increase in the accuracy that numerical solutions have, obtained taking into account the fullness of the cells. The proposed difference schemes on the basis of linear combination of the Upwind and Standard Leapfrog difference schemes with weighting factors of 2/3 and 1/3, respectively, obtained by minimizing the order of approximation error, for the diffusion – convection problem have a lower grid viscosity and, as a corollary, more precisely, describe the behavior of the solution in the case of large grid Peclet numbers.
-
Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.
Ключевые слова: обратные задачи, параметрическая идентификация, интервальные оценки, интервальные параметры, динамические системы, обыкновенные дифференциальные уравнения, алгоритм адаптивной интерполяции, градиентный спуск.
Parametric identification of dynamic systems based on external interval estimates of phase variables
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 299-314An important role in the construction of mathematical models of dynamic systems is played by inverse problems, which in particular include the problem of parametric identification. Unlike classical models that operate with point values, interval models give upper and lower boundaries on the quantities under study. The paper considers an interpolation approach to solving interval problems of parametric identification of dynamic systems for the case when experimental data are represented by external interval estimates. The purpose of the proposed approach is to find such an interval estimate of the model parameters, in which the external interval estimate of the solution of the direct modeling problem would contain experimental data or minimize the deviation from them. The approach is based on the adaptive interpolation algorithm for modeling dynamic systems with interval uncertainties, which makes it possible to explicitly obtain the dependence of phase variables on system parameters. The task of minimizing the distance between the experimental data and the model solution in the space of interval boundaries of the model parameters is formulated. An expression for the gradient of the objectivet function is obtained. On a representative set of tasks, the effectiveness of the proposed approach is demonstrated.
-
Сверхзвуковое обтекание системы тел
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 969-980Работа посвящена аэродинамическим свойствам системы тел, обтекаемой сверхзвуковым потоком. Рассматривается вопрос об уменьшении взаимного влияния с увеличением размера, характеризующего разлет элементов системы. Для моделирования течения применен метод построения сетки из набора сеток. Одна из сеток, регулярная с прямоугольными ячейками, отвечает за интерференцию между телами и служит для описания внешнего невязкого течения. Другие сетки связаны с поверхностями обтекаемых тел и позволяют описать вязкие слои около обтекаемых тел. Эти сетки накладываются на первую, без совмещения каких-либо узлов. Граничные условия реализуются через интерполяцию функций на границах с одной сетки на другую.
Просмотров за год: 1. Цитирований: 19 (РИНЦ).The given work is devoted aerodynamic properties of system of the bodies which are flowed round by a supersonic stream. The question on reduction of mutual influence with increase in the size characterising scattering of elements of system is considered. The method of construction of a grid is applied to current modeling from a set of grids. One of grids, regular with rectangular cells, is responsible for an interference between bodies
and serves for the description of an external nonviscous current. Other grids are connected with surfaces of streamline bodies and allow to describe viscous layers about streamline bodies. These grids are imposed on the first, without combination of any knots. Boundary conditions are realized through interpolation of functions on borders from one grid on another. -
Исследование влияния двух геометрических параметров на точность решения гидростатической задачи методом гидродинамики сглаженных частиц
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 979-992В работе выделены два значимых геометрических параметра, влияющих на интерполяцию физических величин, в методе гидродинамики сглаженных частиц (SPH). Это коэффициент сглаживания, связывающий размер частицы с величиной радиуса сглаживания, и коэффициент объема, позволяющий корректно определять массу частицы при заданном распределении частиц в среде.
Предложена методика оценки влияния означенных параметров на точность интерполяций в методе SPH при решении гидростатической задачи. Для оценки точности численного решения вводятся аналитические функции относительной погрешности восстановления плотности и градиента давления в среде. Функции погрешности зависят от коэффициента сглаживания и коэффициента объема. Выбор конкретной интерполяции метода SPH позволяет преобразовать дифференциальную форму функций погрешности к форме алгебраического полинома. Корни такого полинома дают значения коэффициента сглаживания, обеспечивающие минимальную погрешность соответствующей интерполяции при заданном коэффициенте объема.
В работе осуществлены вывод и анализф ункций относительных погрешностей плотности и градиента давления на выборке популярных ядер с различными радиусами сглаживания. Установлено, что для всех рассмотренных ядер не существует общего значения коэффициента сглаживания, обеспечивающего минимальную погрешность обеих SPH-интерполяций. Выделены представители ядер с различными радиусами сглаживания, позволяющие обеспечить наименьшие погрешности SPH-интерполяций при решении гидростатической задачи. Также определены некоторые ядра, не позволяющие обеспечить корректное интерполирование при решении гидростатической задачи методом SPH.
Ключевые слова: движение несжимаемой среды, SPH, метод гидродинамики сглаженных частиц, ядро, радиус сглаживания, интерполяционная функция, точность воспроизведения значения, законы сохранения.
The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.
In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.
In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.
-
Применение метода сбалансированной идентификации для заполнения пропусков в рядах наблюдений за потоками СО2 на сфагновом верховом болоте
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 153-171В работе рассматривается применение метода сбалансированной идентификации для построения многофакторной функциональной зависимости нетто СО2-обмена (NEE) от факторов внешней среды и ее дальнейшего использования для заполнения пропусков в рядах наблюдений за потоками СО2 на верховом сфагновом болоте в Тверской области. Измерения потоков на болоте проводились с помощью метода турбулентных пульсаций в период с августа по ноябрь 2017 года. Из-за дождливых погодных условий и высокой повторяемости периодов с низкой турбулентностью на протяжении всего периода наблюдений доля пропусков в измерениях NEE на исследуемом болоте превысила 40%. Разработанная для заполнения пропусков модель описывает NEE верхового болота как разность экосистемного дыхания (RE) и валовой первичной продукции (GPP) и учитывает зависимость этих параметров от приходящей суммарной солнечной радиации (Q), температуры почвы (T), дефицита упругости водяного пара (VPD) и уровня болотных вод (WL). Используемый для этой цели метод сбалансированной идентификации основан на поиске оптимального соотношения между простотой модели и точностью повторения измерений — соотношения, доставляющего минимум оценке погрешности моделирования, полученной методом перекрестного оценивания. Полученные численные решения обладают минимально необходимой нелинейностью (кривизной), что обеспечивает хорошие интерполяционные и экстраполяционные свойства построенных моделей, необходимые для восполнения недостающих данных по потокам. На основе проведенного анализа временной изменчивости NEE и факторов внешней среды была выявлена статистически значимая зависимость GPP болота от Q, T и VPD, а RE — от T и WL. При этом погрешность применения предложенного метода для моделирования среднесуточных данных NEE составила менее 10%, а точность выполненных оценок NEE была выше, чем у модели REddyProc, учитывающей влияние на NEE меньшего числа внешних факторов. На основе восстановленных непрерывных рядов данных по NEE была проведена оценка масштабов внутрисуточной и межсуточной изменчивости NEE и получены интегральные оценки потоков СО2 исследуемого верхового болота для выбранного летне-осеннего периода. Было показано, что если в августе 2017 года на исследуемом болоте скорость фиксации СО2 растительным покровом существенно превышала величину экосистемного дыхания, то, начиная с сентября, на фоне снижения GPP исследуемое болото превратилось в устойчивый источник СО2 для атмосферы.
Ключевые слова: метод сбалансированной идентификации, метод турбулентных пульсаций, верховое болото, нетто-экосистемный обмен СО2, экосистемное дыхание, валовая первичная продукция.
Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 153-171Просмотров за год: 19.The method of balanced identification was used to describe the response of Net Ecosystem Exchange of CO2 (NEE) to change of environmental factors, and to fill the gaps in continuous CO2 flux measurements in a sphagnum peat bog in the Tver region. The measurements were provided in the peat bog by the eddy covariance method from August to November of 2017. Due to rainy weather conditions and recurrent periods with low atmospheric turbulence the gap proportion in measured CO2 fluxes at our experimental site during the entire period of measurements exceeded 40%. The model developed for the gap filling in long-term experimental data considers the NEE as a difference between Ecosystem Respiration (RE) and Gross Primary Production (GPP), i.e. key processes of ecosystem functioning, and their dependence on incoming solar radiation (Q), soil temperature (T), water vapor pressure deficit (VPD) and ground water level (WL). Applied for this purpose the balanced identification method is based on the search for the optimal ratio between the model simplicity and the data fitting accuracy — the ratio providing the minimum of the modeling error estimated by the cross validation method. The obtained numerical solutions are characterized by minimum necessary nonlinearity (curvature) that provides sufficient interpolation and extrapolation characteristics of the developed models. It is particularly important to fill the missing values in NEE measurements. Reviewing the temporary variability of NEE and key environmental factors allowed to reveal a statistically significant dependence of GPP on Q, T, and VPD, and RE — on T and WL, respectively. At the same time, the inaccuracy of applied method for simulation of the mean daily NEE, was less than 10%, and the error in NEE estimates by the method was higher than by the REddyProc model considering the influence on NEE of fewer number of environmental parameters. Analyzing the gap-filled time series of NEE allowed to derive the diurnal and inter-daily variability of NEE and to obtain cumulative CO2 fluxs in the peat bog for selected summer-autumn period. It was shown, that the rate of CO2 fixation by peat bog vegetation in August was significantly higher than the rate of ecosystem respiration, while since September due to strong decrease of GPP the peat bog was turned into a consistent source of CO2 for the atmosphere.
-
Применение алгоритма Random Forest для построения локального оператора, уточняющего результаты расчетов в задачах внешней аэродинамики
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 761-778При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.
В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.
Ключевые слова: пристенная декомпозиция, пристенные функции, вычислительная аэродинамика, случайный лес, машинное обучение, турбулентность.
Application of Random Forest to construct a local operator for flow fields refinement in external aerodynamics problems
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 761-778Numerical modeling of turbulent flows requires finding the balance between accuracy and computational efficiency. For example, DNS and LES models allow to obtain more accurate results, comparing to RANS models, but are more computationally expensive. Because of this, modern applied simulations are mostly performed with RANS models. But even RANS models can be computationally expensive for complex geometries or series simulations due to the necessity of resolving the boundary layer. Some methods, such as wall functions and near-wall domain decomposition, allow to significantly improve the speed of RANS simulations. However, they inevitably lose precision due to using a simplified model in the near-wall domain. To obtain a model that is both accurate and computationally efficient, it is possible to construct a surrogate model based on previously made simulations using the precise model.
In this paper, an operator is constructed that allows reconstruction of the flow field obtained by an accurate model based on the flow field obtained by the simplified model. Spalart–Allmaras model with approximate nearwall domain decomposition and Spalart–Allmaras model resolving the near-wall region are taken as the simplified and the base models respectively. The operator is constructed using a local approach, i. e. to reconstruct a point in the flow field, only features (flow variables and their derivatives) at this point in the field are used. The operator is constructed using the Random Forest algorithm. The efficiency and accuracy of the obtained surrogate model are demonstrated on the supersonic flow over a compression corner with different values for angle $\alpha$ and Reynolds number. The investigation has been conducted into interpolation and extrapolation both by $Re$ and $\alpha$.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"