Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.
Ключевые слова: главный комплекс гистосовместимости, аффинностьсв язывания, нейронная сеть, машинное обучение, модельП оттса.
Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.
-
Математические и вычислительные проблемы, связанные с образованием структур в сложных системах
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 805-815В данной работе рассматривается система уравнений магнитной гидродинамики (МГД). Найденные точные решения описывают течения жидкости в пористой среде и связаны с вопросами разработки кернового симулятора и задачами управления параметрами несжимаемой жидкости и направлены на создание отечественной технологии «цифровое месторождение». Центральной проблемой, связанной с использованием вычислительной техники, являются сеточные аппроксимации большой размерности и суперЭВМ высокой производительности с большим числом параллельно работающих микропроцессоров. В качестве возможной альтернативы сеточным аппроксимациям большой размерности разрабатываются кинетические методы решения дифференциальных уравнений и методы «склейки» точных решений на грубых сетках. Сравнительный анализ эффективности вычислительных систем позволяет сделать вывод о необходимости развития организации вычислений, основанных на целочисленной арифметике в сочетании с универсальными приближенными методами. Предложен класс точных решений системы Навье – Стокса, описывающий трехмерные течения для несжимаемой жидкости, а также точные решения нестационарной трехмерной магнитной гидродинамики. Эти решения важны для практических задач управляемой динамики минерализованных флюидов, а также для создания библиотек тестов для верификации приближенных методов. Выделены ряд явлений, связанных с образованием макроскопических структур за счет высокой интенсивности взаимодействия элементов пространственно однородных систем, а также их возникновение за счет линейного пространственного переноса в пространственно-неоднородных системах. Принципиальным является то, что возникновение структур — это следствие разрывности операторов в нормах законов сохранения. Наиболее разработанной и универсальной является теория вычислительных методов для линейных задач. Поэтому с этой точки зрения важными являются процедуры «погружения» нелинейных задач в общие классы линейных за счет изменения исходной размерности описания и расширения функциональных пространств. Отождествление функциональных решений с функциями позволяет вычислять интегральные средние неизвестной, но в то же время ее нелинейные суперпозиции, вообще говоря, не являются слабыми пределами нелинейных суперпозиций приближений метода, т.е. существуют функциональные решения, которые не являются обобщенными в смысле С. Л. Соболева.
Mathematical and computational problems associated with the formation of structures in complex systems
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.
-
Подход к оценке динамики уровня консолидированности отраcли
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 129-140В данной статье нами предложен новый подход к анализу эконометрических параметров отрасли для уровня консолидированности отрасли. Исследование базируется на простой модели управления отраслью в соответствии с моделью из теории автоматического управления. Состояние отрасли оценивается на основе ежеквартальных эконометрических параметров получаемых в обезличенном виде от каждой компании отрасли через налогового регулятора.
Предложен подход к анализу отрасли, который не предусматривает отслеживания эконометрических показателей каждой компании, но рассматривает параметры всех компаний отрасли, как единого объекта.
Ежеквартальными эконометрическими параметрами для каждой компании отрасли являются доход, количество работников, налоги и сборы, уплачиваемые в бюджет, доход от продажи лицензионных прав на программное обеспечение.
Был использован ABC-метод анализа модифицированный до ABCD-метода (D — компании с нулевым вкладом в соответствующую отраслевую метрику) для различных отраслевых метрик. Были построены Парето-кривые для множества эконометрических параметров отрасли.
Для оценки степени монополизированности отрасли был рассчитан индекс Херфиндаля – Хиршмана (ИХХ) для наиболее чувствительных метрик отрасли. С использованием ИХХ было показано что пандемия COVID-19 не привела к существенным изменениям уровня монополизированности российской ИТ-отрасли.
В качестве наиболее наглядного подхода к отображению отрасли было предложено использовать диаграмму рассеяния в сочетании с присвоением компаниям отрасли цвета в соответствии с их позицией на Парето-кривой. Также продемонстрирован эффект влияния процедуры аккредитации путем отображения отрасли в формате диаграммы рассеяния c красно-черным отображением аккредитованных и неаккредитованных компаний, соответственно.
И заключительным результатом, отраженным в статье является предложение использования процедуры сквозной идентификации при организации цепочек поставок программного обеспечения с целью контроля структуры рынка программного обеспечения. Этот подход позволяет избежать множественного учета при продаже лицензий на программное обеспечение в рамках цепочек поставок.
Результаты работы могут быть положены в основу дальнейшего анализа ИТ-отрасли и перехода к агентному моделированию отрасли.
Approach to Estimating the Dynamics of the Industry Consolidation Level
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 129-140In this article we propose a new approach to the analysis of econometric industry parameters for the industry consolidation level. The research is based on the simple industry automatic control model. The state of the industry is measured by quarterly obtained econometric parameters from each industry’s company provided by the tax control regulator. An approach to analysis of the industry, which does not provide for tracking the economy of each company, but explores the parameters of the set of all companies as a whole, is proposed. Quarterly obtained econometric parameters from each industry’s company are Income, Quantity of employers, Taxes, and Income from Software Licenses. The ABC analysis method was modified by ABCD analysis (D — companies with zero-level impact to industry metrics) and used to make the results obtained for different indicators comparable. Pareto charts were formed for the set of econometric indicators.
To estimate the industry monopolization, the Herfindahl – Hirschman index was calculated for the most sensitive companies metrics. Using the HHI approach, it was proved that COVID-19 does not lead to changes in the monopolization of the Russian IT industry.
As the most visually obvious approach to the industry visualization, scattering diagrams in combination with the Pareto graph colors were proposed. The affect of the accreditation procedure is clearly observed by scattering diagram in combination with red/black dots for accredited and nonaccredited companies respectively.
The last reported result is the proposal to use the Licenses End-to-End Product Identification as the market structure control instrument. It is the basis to avoid the multiple accounting of the licenses reselling within the chain of software distribution.
The results of research could be the basis for future IT industry analysis and simulation on the agent based approach.
-
Калибровка эластостатической модели манипулятора с использованием планирования эксперимента на основе методов искусственного интеллекта
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1535-1553В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.
Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.
Ключевые слова: моделирование жесткости, эластостатическая калибровка, индустриальный робот, планирование эксперимента.
Calibration of an elastostatic manipulator model using AI-based design of experiment
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.
The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.
-
Оптимальное управление вложением средств коммерческого банка с учетом процессов реинвестирования
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 309-319Статья посвящена созданию математического управления процессами вложения средств банка в его деятельность. Весь процесс построения оптимального управления можно разбить на две составляющие: первая, выявление функций, описывающих движение ликвидного капитала в банке, и вторая, использование полученных функций в схеме динамического программирования. Прежде эта задача была рассмотрена в статье «Оптимальное управление вложением средств банка как фактор экономической стабильности» в № 4 за 2012 год. В существующей статье рассмотрена модификация этого решения, в частности, вводится дополнительная функция реинвестирования ℜ(φ), где φ — это приток ликвидных средств от предшествующего шага.
Ключевые слова: банковская ликвидность, эконометрическая модель движения ликвидного капитала, оптимальное управление, реинвестирование.
Optimal control of the commercial bank investment including the reinvestment processes
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 309-319Просмотров за год: 6. Цитирований: 1 (РИНЦ).Article is devoted to the creation of a mathematical control of the bank investment process. The whole process of building optimal control may be divided into two components: in the first place, there is the identification of the functions describing the liquid capital movement in the bank and, in the second place, the use of these functions in the scheme of dynamic programming. Before this problem was discussed in the article "Optimal control of the bank investment as a factor of economic stability" in the 4th issue for 2012. In the present article considers this modification of the solution, in particular, we use ℜ(φ) as a function of reinvestment, where φ is inflow of liquid capital realized at the previous step of control.
-
Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.
Ключевые слова: гидриды металлов, моделирование кинетики фазового перехода, численное моделирование химической кинетики.
High-throughput identification of hydride phase-change kinetics models
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.
-
Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.
Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.
Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.
Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.
В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.
Ключевые слова: глубокое обучение, машинное обучение, ЭЭГ, сверточная нейронная сеть, классификация, кластеризация, прогнозирование взаимодействия препарата с мишенью.
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Идентификация математической модели и исследование различных режимов метаногенеза в мезофильной среде
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 131-141Предложена математическая модель процесса получения биогаза из отходов животноводства. Разработан алгоритм идентификации параметров модели. Проведена оценка точности идентификации модели. Приведены результаты моделирования для периодического и непрерывного режимов подачи субстрата. Найдена оптимальная скорость подачи субстрата для непрерывного режима.
Ключевые слова: метаногенез, биогаз, математическая модель, система обыкновенных дифференциальных уравнений, идентификация математической модели, генетический алгоритм.
Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 131-141Просмотров за год: 10. Цитирований: 10 (РИНЦ).A mathematical model for the production of biogas from animal waste was developed. An algorithm for identification of model parameters was developed. The accuracy of model identification was performed. The result of simulation for batch and continuous modes of supply of substrate was shown. The optimum flow rate of the substrate for continuous operation was found.
-
Пространственно-временная динамика и принцип конкурентного исключения в сообществе
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.
Ключевые слова: сообщество, видовая структура, математическая модель, фактор, неустойчивость по Тьюрингу.
Spatiotemporal dynamics and the principle of competitive exclusion in community
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824Просмотров за год: 11.Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.
-
Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.
Ключевые слова: кредитная задолженность, процентная ставка, динамическое моделирование, модель в пространстве состояний, прогнозирование.
Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"