Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Модель оперативного оптимального управления распределением финансовых ресурсов предприятия
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 343-358В статье проведен критический анализ существующих методов и моделей, предназначенных для решения задачи планирования распределения финансовых ресурсов в цикле оперативного управления предприятием. Выявлен ряд существенных недостатков представленных моделей, ограничивающих сферу их применения: статический характер моделей, не учитывается вероятностный характер финансовых потоков, не выявляются существенно влияющие на платежеспособность и ликвидность предприятия ежедневные суммы остатков дебиторской и кредиторской задолженности. Это обуславливает необходи- мость разработки новой модели, отражающей существенные свойства системы планирования финансо- вых потоков — стохастичность, динамичность, нестационарность. Назначением такой модели является информационная поддержка принимаемых решений при формировании плана расходования финансовых ресурсов по критериям экономической эффективности.
Разработана модель распределения финансовых потоков, основанная на принципах оптимального динамического управления и методе динамического программирования, обеспечивающая планирование распределения финансовых ресурсов с учетом достижения достаточного уровня ликвидности и платежеспособности предприятия в условиях неопределенности исходных данных. Предложена алгоритмическая схема формирования целевого остатка денежных средств на принципах обеспечения финансовой устойчивости предприятия в условиях изменяющихся финансовых ограничений.
Особенностью предложенной модели является представление процесса распределения денежных средств в виде дискретного динамического процесса, для которого определяется план распределения финансовых ресурсов, обеспечивающий экстремум критерия эффективности. Формирование такого плана основано на согласовании платежей (финансовых оттоков) с их поступлениями (финансовыми притоками). Такой подход позволяет синтезировать разные планы, отличающиеся разным сочетанием финансовых оттоков, а затем осуществлять поиск наилучшего по заданному критерию. В качестве критерия эффективности приняты минимальные суммарные затраты, связанные с уплатой штрафов за несвоевременное финансирование расходных статей. Ограничениями в модели являются требование обеспечения минимально допустимой величины остатков накопленных денежных средств по подпериодам планового периода, а также обязательность осуществления платежей в течение планового периода с учетом сроков погашения этих платежей. Модель позволяет с высокой степенью эффективности решать задачу планирования распределения финансовых ресурсов в условиях неопределенности сроков и объемов их поступления, согласования притоков и оттоков финансовых ресурсов. Практическая значимость модели состоит в возможности улучшить качество финансового планирования, повысить эффективность управления и операционную эффективность предприятия.
Ключевые слова: оперативный финансовый план, финансовые потоки, согласованное управление, дискретное оптимальное управление, метод динамического программирования, минимизация рисков.
Model for operational optimal control of financial recourses distribution in a company
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358Просмотров за год: 33.A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.
The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.
Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
Ключевые слова: сверточная нейронная сеть, анализ данных, распознавание дорожных знаков, интеллектуальные транспортные системы.
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Модель для анализа неравенства доходов на основе конечной функциональной последовательности (проблемы адекватности и применения)
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 675-689Рассмотрены вопросы адекватности разработанной ранее автором модели для анализа неравенства доходов, основанной на эмпирически подтвержденной гипотезе о том, что относительные (по отношению к доходу наиболее богатой группы) величины дохода 20% групп населения в совокупном доходе могут быть приближенно представлены в виде конечной функциональной последовательности, каждый член которой зависит от одного параметра — специально определенного показателя неравенства. Показано, что в дополнение к существующим методам анализа неравенства с помощью этой модели можно определить зависимость доли дохода 20%, 10% и более мелких групп населения от уровня неравенства, выявить особенности их изменения при росте неравенства, рассчитать уровень неравенства при известных соотношениях между доходами различных групп населения и др.
В работе приводится более подробное подтверждение адекватности предложенной модели по сравнению с полученными ранее результатами статистического анализа эмпирических данных о распределении доходов между 20%- и 10%-ми группами населения. Оно основано на анализе определенных соотношений между величинами квинтилей и децилей согласно предлагаемой модели. Проверка этих соотношений проведена по совокупности данных для большого числа стран. Полученные оценки подтверждают достаточно высокую точность модели.
Приведены данные, которые подтверждают возможность применения модели для анализа зависимости распределения доходов по группам населения от уровня неравенства, а также для оценки показателя неравенства для вариантов соотношений доходов между различными группами, в том числе когда доход 20% наиболее богатых равен доходу 60% бедных, доходу 40% среднего класса или доходу 80% остального населения, а также когда доход 10% самых богатых равен доходу 40%, 50% или 60% бедных, доходу различных групп среднего класса и др., а также для случаев, когда распределение доходов подчиняется гармоническим пропорциям и когда квинтили и децили, соответствующие среднему классу, достигают максимума. Показано, что доли дохода наиболее богатых групп среднего класса относительно стабильны и имеют максимум при определенных уровнях неравенства.
Полученные с помощью модели результаты могут быть использованы для определения нормативов при разработке политики поэтапного повышении уровня прогрессивного налогообложения с целью перехода к уровню неравенства, характерному для стран с социально ориентированной экономикой.
Ключевые слова: неравенство, доход, модель, распределение, показатель неравенства, адекватность, последовательность.
A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.
The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.
Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.
The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.
-
Биоматематическая система методов описания нуклеиновых кислот
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.
Ключевые слова: генетические алгоритмы, вариативность, многомерный анализ данных, физико-химические параметры нуклеиновых кислот, конечная геометрия.
Biomathematical system of the nucleic acids description
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 417-434The article is devoted to the application of various methods of mathematical analysis, search for patterns and studying the composition of nucleotides in DNA sequences at the genomic level. New methods of mathematical biology that made it possible to detect and visualize the hidden ordering of genetic nucleotide sequences located in the chromosomes of cells of living organisms described. The research was based on the work on algebraic biology of the doctor of physical and mathematical sciences S. V. Petukhov, who first introduced and justified new algebras and hypercomplex numerical systems describing genetic phenomena. This paper describes a new phase in the development of matrix methods in genetics for studying the properties of nucleotide sequences (and their physicochemical parameters), built on the principles of finite geometry. The aim of the study is to demonstrate the capabilities of new algorithms and discuss the discovered properties of genetic DNA and RNA molecules. The study includes three stages: parameterization, scaling, and visualization. Parametrization is the determination of the parameters taken into account, which are based on the structural and physicochemical properties of nucleotides as elementary components of the genome. Scaling plays the role of “focusing” and allows you to explore genetic structures at various scales. Visualization includes the selection of the axes of the coordinate system and the method of visual display. The algorithms presented in this work are put forward as a new toolkit for the development of research software for the analysis of long nucleotide sequences with the ability to display genomes in parametric spaces of various dimensions. One of the significant results of the study is that new criteria were obtained for the classification of the genomes of various living organisms to identify interspecific relationships. The new concept allows visually and numerically assessing the variability of the physicochemical parameters of nucleotide sequences. This concept also allows one to substantiate the relationship between the parameters of DNA and RNA molecules with fractal geometric mosaics, reveals the ordering and symmetry of polynucleotides, as well as their noise immunity. The results obtained justified the introduction of new terms: “genometry” as a methodology of computational strategies and “genometrica” as specific parameters of a particular genome or nucleotide sequence. In connection with the results obtained, biosemiotics and hierarchical levels of organization of living matter are raised.
-
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
Ключевые слова: пиролиз пропана, математическая модель, химическая кинетика, анализ чувствительности, анализ идентифицируемости.
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
-
Математические особенности индивидуального дозиметрического планирования радиойодтерапии на основе фармакокинетического моделирования
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 773-784При определении лечебных поглощенных доз в процессе радиойодтерапии в отечественной медицине все чаще используется метод индивидуального дозиметрического планирования (ИДП). Однако для успешной реализации данного метода необходимо наличие соответствующего программного обеспечения, позволяющего произвести моделирование фармакокинетики радиойода в организме пациента и рассчитать необходимую терапевтическую активность радиофармацевтического лекарственного препарата (РФЛП) для достижения в щитовидной железе запланированной лечебной поглощенной дозы.
Цель работы — разработка программного комплекса фармакокинетического моделирования и расчета индивидуальных поглощенных доз при радиойодтерапии на основе пятикамерной модели кинетики радиойода с применением двух математических методов оптимизации. Работа основана на принципах и методах фармакокинетики РФЛП (камерное моделирование). Для нахождения минимума функционала невязки при идентификации значений транспортных констант модели были использованы метод Хука – Дживса и метод имитации отжига. Расчет дозиметрических характеристик и вводимой терапевтической активности основан на методике расчета поглощенных доз через найденные в процессе моделирования функции активностей радиойода в камерах. Для идентификации параметров модели использованы результаты радиометрии щитовидной железы и мочи пациентов с введенным в организм радиойодом.
Разработан программный комплекс моделирования кинетики радиойода при его пероральном поступлении в организм. Для пациентов с диффузным токсическим зобом идентифицированы транспортные константы модели и рассчитаны индивидуальные фармакокинетические и дозиметрические характеристики (периоды полувыведения, максимальная активность в щитовидной железе и время ее достижения, поглощенные дозы на критические органы и ткани, вводимая терапевтическая активность). Получены и проанализированы зависимости «активность – время» для всех камер модели. Проведен сравнительный анализ фармакокинетических и дозиметрических характеристик, рассчитанных в рамках двух математических методов оптимизации. Осуществлена оценка stunning-эффекта и его вклад в погрешности расчета поглощенных доз. Из сравнительного анализа рассчитанных в рамках двух методов оптимизации фармакокинетических и дозиметрических характеристик следует, что использование более сложного математического метода имитации отжига в программном комплексе не приводит к существенным изменениям в значениях характеристик по сравнению с простым методом Хука – Дживса. Погрешности расчета поглощенных доз в рамках этих математических методов оптимизации не превышают вариации значений поглощенных доз от stunning-эффекта.
Ключевые слова: математическое моделирование, диффузный токсический зоб, индивидуальное дозиметрическое планирование, щитовидная железа, радиойод.
Mathematical features of individual dosimetric planning of radioiodotherapy based on pharmacokinetic modeling
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 773-784When determining therapeutic absorbed doses in the process of radioiodine therapy, the method of individual dosimetric planning is increasingly used in Russian medicine. However, for the successful implementation of this method, it is necessary to have appropriate software that allows modeling the pharmacokinetics of radioiodine in the patient’s body and calculate the necessary therapeutic activity of a radiopharmaceutical drug to achieve the planned therapeutic absorbed dose in the thyroid gland.
Purpose of the work: development of a software package for pharmacokinetic modeling and calculation of individual absorbed doses in radioiodine therapy based on a five-chamber model of radioiodine kinetics using two mathematical optimization methods. The work is based on the principles and methods of RFLP pharmacokinetics (chamber modeling). To find the minimum of the residual functional in identifying the values of the transport constants of the model, the Hook – Jeeves method and the simulated annealing method were used. Calculation of dosimetric characteristics and administered therapeutic activity is based on the method of calculating absorbed doses using the functions of radioiodine activity in the chambers found during modeling. To identify the parameters of the model, the results of radiometry of the thyroid gland and urine of patients with radioiodine introduced into the body were used.
A software package for modeling the kinetics of radioiodine during its oral intake has been developed. For patients with diffuse toxic goiter, the transport constants of the model were identified and individual pharmacokinetic and dosimetric characteristics (elimination half-lives, maximum thyroid activity and time to reach it, absorbed doses to critical organs and tissues, administered therapeutic activity) were calculated. The activity-time relationships for all cameras in the model are obtained and analyzed. A comparative analysis of the calculated pharmacokinetic and dosimetric characteristics calculated using two mathematical optimization methods was performed. Evaluation completed the stunning-effect and its contribution to the errors in calculating absorbed doses. From a comparative analysis of the pharmacokinetic and dosimetric characteristics calculated in the framework of two optimization methods, it follows that the use of a more complex mathematical method for simulating annealing in a software package does not lead to significant changes in the values of the characteristics compared to the simple Hook – Jeeves method. Errors in calculating absorbed doses in the framework of these mathematical optimization methods do not exceed the spread of absorbed dose values from the stunning-effect.
-
Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.
Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.
Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.
Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.
Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.
Ключевые слова: методы машинного обучения, устойчивое развитие, Арктическая зона РФ, экономические критерии, Полярный индекс компаний.
Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.
-
Описание изгибов протофиламентов микротрубочек
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 435-443Работа посвящена анализу конформационных изменений в димерах и тетрамерах тубулина, в частности оценке изгиба составленных из них протофиламентов. В работе рассмотрено три недавно использованных подхода для оценки изгиба тубулиновых протофиламентов: (1) измерение угла между вектором, проходящим через H7 спирали в $\alpha$- и $\beta$-мономерах тубулина в прямой структуре, и таким же вектором в изогнутой структуре тубулина; (2) измерение угла между вектором, соединяющим центры масс субъединицы и связанного с ней ГТФ- нуклеотида, и вектором, связывающим центры масс того же нуклеотида и соседней субъединицы тубулина; (3) измерение трех углов вращения субъединицы тубулина в изогнутой структуре димера тубулина относительно аналогичной субъединицы в прямой структуре димера тубулина. Приведены рассчитанные в соответствии с описанными тремя метриками количественные оценки углов на внутри- и междимерных интерфейсах тубулина в опубликованных кристаллических структурах. Внутридимерные углы тубулина в одной структуре, измеренные по методу (3), как и измерения этим методом внутридимерных углов в разных структурах, были более схожи, чем при использовании других методов, что говорит о меньшей чувствительности метода к локальным изменениям конформации тубулина, и характеризует метод в целом как более устойчивый. Измерения кривизны тубулина по углу между H7-спиралями дают несколько заниженную оценку удельной кривизны тубулина на димер, а метод (2), хотя на первый взгляд и дает цифры, также довольно хорошо совпадающие с оценками криоэлектронной микроскопии, существенно завышает углы даже на прямых структурах. Для структур тетрамеров тубулина в комплексе с белком статмином углы изгиба, рассчитанные по всем трем метрикам, различались для первого и второго димеров довольно существенно (до 20 % и больше), что говорит о чувствительности всех метрик к незначительным вариациям в конформации димеров тубулина внутри этих комплексов. Подробное описание процедур измерения изгибов тубулиновых протофиламентов, а также выявление преимуществ и недостатков различных метрик позволит увеличить воспроизводимость и четкость анализа структур тубулина в будущем, а также позволит облегчить сопоставление результатов, полученных различными научными группами.
Ключевые слова: тубулин, микротрубочки, динамическая нестабильность, углы Эйлера, молекулярное моделирование.
Microtubule protofilament bending characterization
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 435-443This work is devoted to the analysis of conformational changes in tubulin dimers and tetramers, in particular, the assessment of the bending of microtubule protofilaments. Three recently exploited approaches for estimating the bend of tubulin protofilaments are reviewed: (1) measurement of the angle between the vector passing through the H7 helices in $\alpha$ and $\beta$ tubulin monomers in the straight structure and the same vector in the curved structure of tubulin; (2) measurement of the angle between the vector, connecting the centers of mass of the subunit and the associated GTP nucleotide, and the vector, connecting the centers of mass of the same nucleotide and the adjacent tubulin subunit; (3) measurement of the three rotation angles of the bent tubulin subunit relative to the straight subunit. Quantitative estimates of the angles calculated at the intra- and inter-dimer interfaces of tubulin in published crystal structures, calculated in accordance with the three metrics, are presented. Intra-dimer angles of tubulin in one structure, measured by the method (3), as well as measurements by this method of the intra-dimer angles in different structures, were more similar, which indicates a lower sensitivity of the method to local changes in tubulin conformation and characterizes the method as more robust. Measuring the angle of curvature between H7-helices (method 1) produces somewhat underestimated values of the curvature per dimer. Method (2), while at first glance generating the bending angle values, consistent the with estimates of curved protofilaments from cryoelectron microscopy, significantly overestimates the angles in the straight structures. For the structures of tubulin tetramers in complex with the stathmin protein, the bending angles calculated with all three metrics varied quite significantly for the first and second dimers (up to 20% or more), which indicates the sensitivity of all metrics to slight variations in the conformation of tubulin dimers within these complexes. A detailed description of the procedures for measuring the bending of tubulin protofilaments, as well as identifying the advantages and disadvantages of various metrics, will increase the reproducibility and clarity of the analysis of tubulin structures in the future, as well as it will hopefully make it easier to compare the results obtained by various scientific groups.
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
Ключевые слова: машинное обучение, распознавание жестов, человеко-машинный интерфейс, электромиография, ансамбль методов, градиентный бустинг, метод $k$-ближайших соседей, дерево решений.
Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 175-194Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), $k$-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are $k$-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.
-
Разработка и исследование алгоритма выделения признаков в публикациях Twitter для задачи классификации с известной разметкой
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 171-183Посты социальных сетей играют важную роль в отражении ситуации на финансовом рынке, а их анализ является мощным инструментом ведения торговли. В статье описан результат исследования влияния деятельности социальных медиа на движение финансового рынка. Сначала отбирается топ инфлюенсеров, активность которых считается авторитетной в криптовалютном сообществе. Сообщения в Twitter используются в качестве данных. Подобные тексты обычно сильно зашумлены, так как включают сленг и сокращения, поэтому представлены методы подготовки первичных текстовых данных, включающих в себя обработку Stanza, регулярными выражениями. Рассмотрено два подхода представления момента времени в формате текстовых данных. Так исследуется влияние либо одного твита, либо целого пакета, состоящего из твитов, собранных за определенный период времени. Также рассмотрен статистический подход в виде частотного анализа, введены метрики, способные отразить значимость того или иного слова при выявлении зависимости между изменением цены и постами в Twitter. Частотный анализ подразумевает исследование распределений встречаемости различных слов и биграмм в тексте для положительного, отрицательного либо общего трендов. Для построения разметки изменения на рынке перерабатываются в бинарный вектор с помощью различных параметров, задавая таким образом задачу бинарной классификации. Параметры для свечей Binance подбираются для лучшего описания движения рынка криптовалюты, их вариативность также исследуется в данной статье. Оценка эмоционального окраса текстовых данных изучается с помощью Stanford Core NLP. Результат статистического анализа представляет непосредственно практический интерес, так как предполагает выбор признаков для дальнейшей бинарной или мультиклассовой задач классификации. Представленные методы анализа текста способствуют повышению точности моделей, решающих задачи обработки естественного языка, с помощью отбора слов, улучшения качества векторизации. Такие алгоритмы зачастую используются в автоматизированных торговых стратегиях для предсказания цены актива, тренда ее движения.
Ключевые слова: анализ текста, обработка естественного языка, активность в Twitter, частотный анализ, отбор признаков, задача классификации, финансовые рынки.
Development of and research on an algorithm for distinguishing features in Twitter publications for a classification problem with known markup
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 171-183Social media posts play an important role in demonstration of financial market state, and their analysis is a powerful tool for trading. The article describes the result of a study of the impact of social media activities on the movement of the financial market. The top authoritative influencers are selected. Twitter posts are used as data. Such texts usually include slang and abbreviations, so methods for preparing primary text data, including Stanza, regular expressions are presented. Two approaches to the representation of a point in time in the format of text data are considered. The difference of the influence of a single tweet or a whole package consisting of tweets collected over a certain period of time is investigated. A statistical approach in the form of frequency analysis is also considered, metrics defined by the significance of a particular word when identifying the relationship between price changes and Twitter posts are introduced. Frequency analysis involves the study of the occurrence distributions of various words and bigrams in the text for positive, negative or general trends. To build the markup, changes in the market are processed into a binary vector using various parameters, thus setting the task of binary classification. The parameters for Binance candlesticks are sorted out for better description of the movement of the cryptocurrency market, their variability is also explored in this article. Sentiment is studied using Stanford Core NLP. The result of statistical analysis is relevant to feature selection for further binary or multiclass classification tasks. The presented methods of text analysis contribute to the increase of the accuracy of models designed to solve natural language processing problems by selecting words, improving the quality of vectorization. Such algorithms are often used in automated trading strategies to predict the price of an asset, the trend of its movement.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"