Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'frequency analysis':
Найдено статей: 29
  1. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Захарова Е.М.
    Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170

    Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.

    Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Zakharova E.M.
    Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170

    Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.

  2. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Горбачёв Р.А.
    Разработка и исследование алгоритма выделения признаков в публикациях Twitter для задачи классификации с известной разметкой
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 171-183

    Посты социальных сетей играют важную роль в отражении ситуации на финансовом рынке, а их анализ является мощным инструментом ведения торговли. В статье описан результат исследования влияния деятельности социальных медиа на движение финансового рынка. Сначала отбирается топ инфлюенсеров, активность которых считается авторитетной в криптовалютном сообществе. Сообщения в Twitter используются в качестве данных. Подобные тексты обычно сильно зашумлены, так как включают сленг и сокращения, поэтому представлены методы подготовки первичных текстовых данных, включающих в себя обработку Stanza, регулярными выражениями. Рассмотрено два подхода представления момента времени в формате текстовых данных. Так исследуется влияние либо одного твита, либо целого пакета, состоящего из твитов, собранных за определенный период времени. Также рассмотрен статистический подход в виде частотного анализа, введены метрики, способные отразить значимость того или иного слова при выявлении зависимости между изменением цены и постами в Twitter. Частотный анализ подразумевает исследование распределений встречаемости различных слов и биграмм в тексте для положительного, отрицательного либо общего трендов. Для построения разметки изменения на рынке перерабатываются в бинарный вектор с помощью различных параметров, задавая таким образом задачу бинарной классификации. Параметры для свечей Binance подбираются для лучшего описания движения рынка криптовалюты, их вариативность также исследуется в данной статье. Оценка эмоционального окраса текстовых данных изучается с помощью Stanford Core NLP. Результат статистического анализа представляет непосредственно практический интерес, так как предполагает выбор признаков для дальнейшей бинарной или мультиклассовой задач классификации. Представленные методы анализа текста способствуют повышению точности моделей, решающих задачи обработки естественного языка, с помощью отбора слов, улучшения качества векторизации. Такие алгоритмы зачастую используются в автоматизированных торговых стратегиях для предсказания цены актива, тренда ее движения.

    Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on an algorithm for distinguishing features in Twitter publications for a classification problem with known markup
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 171-183

    Social media posts play an important role in demonstration of financial market state, and their analysis is a powerful tool for trading. The article describes the result of a study of the impact of social media activities on the movement of the financial market. The top authoritative influencers are selected. Twitter posts are used as data. Such texts usually include slang and abbreviations, so methods for preparing primary text data, including Stanza, regular expressions are presented. Two approaches to the representation of a point in time in the format of text data are considered. The difference of the influence of a single tweet or a whole package consisting of tweets collected over a certain period of time is investigated. A statistical approach in the form of frequency analysis is also considered, metrics defined by the significance of a particular word when identifying the relationship between price changes and Twitter posts are introduced. Frequency analysis involves the study of the occurrence distributions of various words and bigrams in the text for positive, negative or general trends. To build the markup, changes in the market are processed into a binary vector using various parameters, thus setting the task of binary classification. The parameters for Binance candlesticks are sorted out for better description of the movement of the cryptocurrency market, their variability is also explored in this article. Sentiment is studied using Stanford Core NLP. The result of statistical analysis is relevant to feature selection for further binary or multiclass classification tasks. The presented methods of text analysis contribute to the increase of the accuracy of models designed to solve natural language processing problems by selecting words, improving the quality of vectorization. Such algorithms are often used in automated trading strategies to predict the price of an asset, the trend of its movement.

  3. Зенков А.В.
    Новый метод стилеметрии на основе статистики числительных
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 837-850

    Предложен новый метод статистического анализа текстов. Исследовано распределение частот различных первых значащих цифр в числительных англоязычных текстов. Учитываются количественные и порядковые числительные, выраженные как цифрами, так и словесно. Предварительно из текста удаляются случайно попавшие в него числительные, не отражающие авторский замысел (номера страниц, маркеры списков, идиоматические выражения, устойчивые обороты речи и тому подобное). Обнаружено, что для сборных текстов разного авторства частоты первых значащих цифр приближенно соответствуют известному закону Бенфорда, но с резким преобладанием встречаемости единицы. В связных авторских текстах возникают характерные отклонения от закона Бенфорда; показано, что эти отклонения являются статистически устойчивыми и значимыми авторскими особенностями, позволяющими при определенных условиях ответить на вопрос об авторстве и различить тексты разных авторов. Требуется, чтобы текст был достаточно длинным (не менее чем порядка 200 кБ). Распределение первых значащих цифр конца ряда $\{1, 2, \ldots, 8, 9\}$ подвержено сильным флуктуациям и не показательно для нашей цели. Цель теоретического обоснования найденной эмпирической закономерности в работе не ставится, но продемонстрировано ее практическое использование для атрибуции текстов. Предлагаемый подход и сделанные выводы подкреплены примерами компьютерного анализа художественных текстов У. М. Теккерея, М. Твена, Р. Л. Стивенсона, Дж.Джойса, сестер Бронте, Дж.Остин. На основе разработанной методологии рассмотрены проблемы авторства текста, ранее приписывавшегося Л.Ф. Бауму (результат согласуется с полученным другими методами), а также известного романа Харпер Ли «Убить пересмешника»; показано, что к написанию первоначального варианта этой книги («Пойди, поставь сторожа») мог быть причастен Трумен Капоте, но финальный текст, вероятно, принадлежит Харпер Ли. Результаты подтверждены на основе параметрического критерия Пирсона, а также непараметрических U-критерия Манна–Уитни и критерия Крускала–Уоллиса.

    Zenkov A.V.
    A novel method of stylometry based on the statistic of numerals
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 837-850

    A new method of statistical analysis of texts is suggested. The frequency distribution of the first significant digits in numerals of English-language texts is considered. We have taken into account cardinal as well as ordinal numerals expressed both in figures, and verbally. To identify the author’s use of numerals, we previously deleted from the text all idiomatic expressions and set phrases accidentally containing numerals, as well as itemizations and page numbers, etc. Benford’s law is found to hold approximately for the frequencies of various first significant digits of compound literary texts by different authors; a marked predominance of the digit 1 is observed. In coherent authorial texts, characteristic deviations from Benford’s law arise which are statistically stable significant author peculiarities that allow, under certain conditions, to consider the problem of authorship and distinguish between texts by different authors. The text should be large enough (at least about 200 kB). At the end of $\{1, 2, \ldots, 9\}$ digits row, the frequency distribution is subject to strong fluctuations and thus unrepresentative for our purpose. The aim of the theoretical explanation of the observed empirical regularity is not intended, which, however, does not preclude the applicability of the proposed methodology for text attribution. The approach suggested and the conclusions are backed by the examples of the computer analysis of works by W.M. Thackeray, M. Twain, R. L. Stevenson, J. Joyce, sisters Bront¨e, and J.Austen. On the basis of technique suggested, we examined the authorship of a text earlier ascribed to L. F. Baum (the result agrees with that obtained by different means). We have shown that the authorship of Harper Lee’s “To Kill a Mockingbird” pertains to her, whereas the primary draft, “Go Set a Watchman”, seems to have been written in collaboration with Truman Capote. All results are confirmed on the basis of parametric Pearson’s chi-squared test as well as non-parametric Mann –Whitney U test and Kruskal –Wallis test.

    Просмотров за год: 10.
  4. Игнатьев Н.А., Тулиев У.Ю.
    Семантическая структуризация текстовых документов на основе паттернов сущностей естественного языка
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1185-1197

    Рассматривается технология создания паттернов из слов (понятий) естественного языка по текстовым данным в модели «мешок слов». Паттерны применяются для снижения размерности исходного пространства в описании документов и поиска семантически связанных слов по темам. Процесс снижения размерности реализуется через формирование по паттернам латентных признаков. Исследуется многообразие структур отношений документов для разбиения их на темы в латентном пространстве.

    Считается, что заданное множество документов (объектов) разделено на два непересекающихся класса, для анализа которых необходимо использовать общий словарь. Принадлежность слов к общему словарю изначально неизвестна. Объекты классов рассматриваются в ситуации оппозиции друг к другу. Количественные параметры оппозиционности определяются через значения устойчивости каждого признака и обобщенные оценки объектов по непересекающимся наборам признаков.

    Для вычисления устойчивости используются разбиения значений признаков на непересекающиеся интервалы, оптимальные границы которых определяются по специальному критерию. Максимум устойчивости достигается при условии, что в границах каждого интервала содержатся значения одного из двух классов.

    Состав признаков в наборах (паттернах из слов) формируется из упорядоченной по значениям устойчивости последовательности. Процесс формирования паттернов и латентных признаков на их основе реализуется по правилам иерархической агломеративной группировки.

    Набор латентных признаков используется для кластерного анализа документов по метрическим алгоритмам группировки. В процессе анализа применяется коэффициент контентной аутентичности на основе данных о принадлежности документов к классам. Коэффициент является численной характеристикой доминирования представителей классов в группах.

    Для разбиения документов на темы предложено использовать объединение групп по отношению их центров. В качестве закономерностей по каждой теме рассматривается упорядоченная по частоте встречаемости последовательность слов из общего словаря.

    Приводятся результаты вычислительного эксперимента на коллекциях авторефератов научных диссертаций. Сформированы последовательности слов из общего словаря по четырем темам.

    Ignatev N.A., Tuliev U.Y.
    Semantic structuring of text documents based on patterns of natural language entities
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1185-1197

    The technology of creating patterns from natural language words (concepts) based on text data in the bag of words model is considered. Patterns are used to reduce the dimension of the original space in the description of documents and search for semantically related words by topic. The process of dimensionality reduction is implemented through the formation of patterns of latent features. The variety of structures of document relations is investigated in order to divide them into themes in the latent space.

    It is considered that a given set of documents (objects) is divided into two non-overlapping classes, for the analysis of which it is necessary to use a common dictionary. The belonging of words to a common vocabulary is initially unknown. Class objects are considered as opposition to each other. Quantitative parameters of oppositionality are determined through the values of the stability of each feature and generalized assessments of objects according to non-overlapping sets of features.

    To calculate the stability, the feature values are divided into non-intersecting intervals, the optimal boundaries of which are determined by a special criterion. The maximum stability is achieved under the condition that the boundaries of each interval contain values of one of the two classes.

    The composition of features in sets (patterns of words) is formed from a sequence ordered by stability values. The process of formation of patterns and latent features based on them is implemented according to the rules of hierarchical agglomerative grouping.

    A set of latent features is used for cluster analysis of documents using metric grouping algorithms. The analysis applies the coefficient of content authenticity based on the data on the belonging of documents to classes. The coefficient is a numerical characteristic of the dominance of class representatives in groups.

    To divide documents into topics, it is proposed to use the union of groups in relation to their centers. As patterns for each topic, a sequence of words ordered by frequency of occurrence from a common dictionary is considered.

    The results of a computational experiment on collections of abstracts of scientific dissertations are presented. Sequences of words from the general dictionary on 4 topics are formed.

  5. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Горбачёв Р.А.
    Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195

    Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.

    Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195

    Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.

  6. Варшавский L.Е.
    Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233

    В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.

    В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.

    На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.

    В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.

    varshavsky L.Eug.
    Study of the dynamics of the structure of oligopolistic markets with non-market opposition parties
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 219-233

    The article examines the impact of non-market actions of participants in oligopolistic markets on the market structure. The following actions of one of the market participants aimed at increasing its market share are analyzed: 1) price manipulation; 2) blocking investments of stronger oligopolists; 3) destruction of produced products and capacities of competitors. Linear dynamic games with a quadratic criterion are used to model the strategies of oligopolists. The expediency of their use is due to the possibility of both an adequate description of the evolution of markets and the implementation of two mutually complementary approaches to determining the strategies of oligopolists: 1) based on the representation of models in the state space and the solution of generalized Riccati equations; 2) based on the application of operational calculus methods (in the frequency domain) which owns the visibility necessary for economic analysis.

    The article shows the equivalence of approaches to solving the problem with maximin criteria of oligopolists in the state space and in the frequency domain. The results of calculations are considered in relation to a duopoly, with indicators close to one of the duopolies in the microelectronic industry of the world. The second duopolist is less effective from the standpoint of costs, though more mobile. Its goal is to increase its market share by implementing the non-market methods listed above.

    Calculations carried out with help of the game model, made it possible to construct dependencies that characterize the relationship between the relative increase in production volumes over a 25-year period of weak and strong duopolists under price manipulation. Constructed dependencies show that an increase in the price for the accepted linear demand function leads to a very small increase in the production of a strong duopolist, but, simultaneously, to a significant increase in this indicator for a weak one.

    Calculations carried out with use of the other variants of the model, show that blocking investments, as well as destroying the products of a strong duopolist, leads to more significant increase in the production of marketable products for a weak duopolist than to a decrease in this indicator for a strong one.

  7. Абрамов В.С., Петров М.Н.
    Применение метода Dynamic Mode Decomposition для поиска неустойчивых мод в задаче о ламинарно-турбулентном переходе
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1069-1090

    Ламинарно-турбулентный переход является предметом активных исследований, связанных с повышением экономической эффективности авиатранспорта, так как в турбулентном пограничном слое увеличивается сопротивление, что ведет к росту расхода топлива. Одним из направлений таких исследований является поиск эффективных методов нахождения положения перехода в пространстве. Используя эту информацию при проектировании летательного аппарата, инженеры могут прогнозировать его технические характеристики и рентабельность уже на начальных этапах проекта. Традиционным для индустрии подходом к решению задачи поиска координат ламинарно-турбулентного перехода является $e^N$-метод. Однако, несмотря на повсеместное применение, он обладает рядом существенных недостатков, так как основан на предположении о параллельности моделируемого потока, что ограничивает сценарии его применения, а также требует проводить вычислительно затратные расчеты в широком диапазоне частот и волновых чисел. Альтернативой $e^N$-методу может служить применение метода Dynamic Mode Decomposition, который позволяет провести анализ возмущений потока, напрямую используя данные о нем. Это избавляет от необходимости в проведении затратных вычислений, а также расширяет область применения метода ввиду отсутствия в его построении предположений о параллельности потока.

    В представленном исследовании предлагается подход к нахождению положения ламинарно-турбулентного перехода с применением метода Dynamic Mode Decomposition, заключающийся в разбиении региона пограничного слоя на множества подобластей, по каждому из которых независимо вычисляется точка перехода, после чего результаты усредняются. Подход валидируется на случаях дозвукового и сверхзвукового обтекания двумерной пластины с нулевым градиентом давления. Результаты демонстрируют принципиальную применимость и высокую точность описываемого метода в широком диапазоне условий. Проводится сравнение с $e^N$-методом, доказывающее преимущества предлагаемого подхода, выражающиеся в более быстром получении результата при сопоставимой с $e^N$-методом точности получаемого решения, что говорит о перспективности использования описываемого подхода в прикладных задачах.

    Abramov V.S., Petrov M.N.
    Application of the Dynamic Mode Decomposition in search of unstable modes in laminar-turbulent transition problem
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1069-1090

    Laminar-turbulent transition is the subject of an active research related to improvement of economic efficiency of air vehicles, because in the turbulent boundary layer drag increases, which leads to higher fuel consumption. One of the directions of such research is the search for efficient methods, that can be used to find the position of the transition in space. Using this information about laminar-turbulent transition location when designing an aircraft, engineers can predict its performance and profitability at the initial stages of the project. Traditionally, $e^N$ method is applied to find the coordinates of a laminar-turbulent transition. It is a well known approach in industry. However, despite its widespread use, this method has a number of significant drawbacks, since it relies on parallel flow assumption, which limits the scenarios for its application, and also requires computationally expensive calculations in a wide range of frequencies and wave numbers. Alternatively, flow analysis can be done by using Dynamic Mode Decomposition, which allows one to analyze flow disturbances using flow data directly. Since Dynamic Mode Decomposition is a dimensionality reduction method, the number of computations can be dramatically reduced. Furthermore, usage of Dynamic Mode Decomposition expands the applicability of the whole method, due to the absence of assumptions about the parallel flow in its derivation.

    The presented study proposes an approach to finding the location of a laminar-turbulent transition using the Dynamic Mode Decomposition method. The essence of this approach is to divide the boundary layer region into sets of subregions, for each of which the transition point is independently calculated, using Dynamic Mode Decomposition for flow analysis, after which the results are averaged to produce the final result. This approach is validated by laminar-turbulent transition predictions of subsonic and supersonic flows over a 2D flat plate with zero pressure gradient. The results demonstrate the fundamental applicability and high accuracy of the described method in a wide range of conditions. The study focuses on comparison with the $e^N$ method and proves the advantages of the proposed approach. It is shown that usage of Dynamic Mode Decomposition leads to significantly faster execution due to less intensive computations, while the accuracy is comparable to the such of the solution obtained with the $e^N$ method. This indicates the prospects for using the described approach in a real world applications.

  8. Тимирьянова В.М., Лакман И.А., Ларькин М.М.
    Прогнозирование розничной торговли на высокочастотных обезличенных данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1713-1734

    Развитие технологий определяет появление данных с высокой детализацией во времени и пространстве, что расширяет возможности анализа, позволяя рассматривать потребительские решения и конкурентное поведение предприятий во всем их многообразии, с учетом контекста территории и особенностей временных периодов. Несмотря на перспективность таких исследований, в настоящее время в научной литературе они представлены ограниченно, что определяется их особенностями. С целью их раскрытия в статье обращается внимание на ключевые проблемы, возникающие при работе с обезличенными высокочастотными данными, аккумулируемыми фискальными операторами, и направления их решения, проводится спектр тестов, направленный на выявление возможности моделирования изменений потребления во времени и пространстве. Особенности нового вида данных рассмотрены на примере реальных обезличенных данных, полученных от оператора фискальных данных «Первый ОФД» (АО «Энергетические системы и коммуникации»). Показано, что одновременно со спектром свойственных высокочастотным данным проблем существуют недостатки, связанные с процессом формирования данных на стороне продавцов, требующие более широкого применения инструментов интеллектуального анализа данных. На рассматриваемых данных проведена серия статистических тестов, включая тест на наличие ложной регрессии, ненаблюдаемых эффектов в остатках модели, последовательной корреляции и кросс-секционной зависимости остатков панельной модели, авторегрессии первого порядка в случайных эффектах, сериальной корреляции на первых разностях панельных данных и др. Наличие пространственной автокорреляции данных тестировалось с помощью модифицированных тестов множителей Лагранжа. Проведенные тесты показали наличие последовательной корреляции и пространственной зависимости данных, обуславливающих целесообразность применения методов панельного и пространственного анализа применительно к высокочастотным данным, аккумулируемым фискальными операторами. Построенные модели позволили обосновать пространственную связь роста продаж и ее зависимость от дня недели. Ограничением для повышения предсказательной возможности построенных моделей и последующего их усложнения, за счет включения объясняющих факторов, стало отсутствие в открытом доступе статистики, сгруппированной в необходимой детализации во времени и пространстве, что определяет актуальность формирования баз высокочастотных географически структурированных данных.

    Timiryanova V.M., Lakman I.A., Larkin M.M.
    Retail forecasting on high-frequency depersonalized data
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734

    Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.

  9. Гузев М.А., Никитина Е.Ю.
    Ранговый анализ уголовных кодексов Российской Федерации, Федеративной Республики Германия и Китайской Народной Республики
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 969-981

    При принятии решения в различных областях человеческой деятельности часто требуется создавать текстовые документы. Традиционно изучением текстов занимается лингвистика, которая в широком смысле может пониматься как часть семиотики — науки о знаках и знаковых системах, при этом семиотические объекты бывают разных типов. Для количественного исследования знаковых систем широко используется метод ранговых распределений. Ранговое распределение — упорядоченная в порядке убывания по частоте появления совокупность наименований элементов. Для частотно-ранговых распределений исследователи часто используют название рower-law distributions.

    В данной работе метод ранговых распределений применяется для анализа Уголовного кодекса различных стран. Общая идея подхода при решении этой задачи состоит в рассмотрении кодекса как текстового документа, в котором знаком является мера наказания за отдельные преступления. Документ представляется как список вхождений некоторого слова (знака), а также всех его производных (словоформ). Совокупность всех этих знаков образует словарь наказаний, для которого выполняется подсчет частоты встречаемости каждой меры наказания в тексте кодекса. Это позволяет преобразовать построенный словарь в частотный словарь наказаний, для дальнейшего исследования которого используются подход В. П. Маслова, предложенный им к анализу задач лингвистики. Этот подход состоит в введении понятия виртуальной частоты встречаемости преступления, которая является мерой оценки не только реального вреда для общества, но и последствий совершенного преступления в различных сферах жизни человека. На этом пути в работе предлагается параметризация рангового распределения для анализа словаря наказаний Особенной части Уголовного кодекса Российской Федерации, касающейся наказаний за экономические преступления. Рассмотрены различные редакции кодекса и показано, что построенная модель объективно отражает его изменения в лучшую сторону, вносимые законодателями с течением времени. Были исследованы тексты, включающие сходные по составу преступления, аналогичные российскому специальному разделу Особенной части, для Уголовных кодексов, действующих в Федеративной Республике Германия и Китайской Народной Республике. Полученные в статье ранговые распределения для соответствующих частотных словарей кодексов совпадают с полученным В. П. Масловым законом, существенно уточняющим закон Ципфа. Это позволяет сделать вывод как о хорошей организации текста, так и об адекватности выбранного наказания для преступлений.

    Guzev M.A., Nikitina E.Yu.
    Rank analysis of the criminal codes of the Russian Federation, the Federal Republic of Germany and the People’s Republic of China
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 969-981

    When making decisions in various fields of human activity, it is often required to create text documents. Traditionally, the study of texts is engaged in linguistics, which in a broad sense can be understood as a part of semiotics — the science of signs and sign systems, while semiotic objects are of different types. The method of rank distributions is widely used for the quantitative study of sign systems. Rank distribution is a set of item names sorted in descending order by frequency of occurrence. For frequency-rank distributions, researchers often use the term «power-law distributions».

    In this paper, the rank distribution method is used to analyze the Criminal Code of various countries. The general idea of the approach to solving this problem is to consider the code as a text document, in which the sign is the measure of punishment for certain crimes. The document is presented as a list of occurrences of a specific word (character) and its derivatives (word forms). The combination of all these signs characters forms a punishment dictionary, for which the occurrence frequency of each punishment in the code text is calculated. This allows us to transform the constructed dictionary into a frequency dictionary of punishments and conduct its further research using the V. P. Maslov approach, proposed to analyze the linguistics problems. This approach introduces the concept of the virtual frequency of crime occurrence, which is an assessment measure of the real harm to society and the consequences of the crime committed in various spheres of human life. On this path, the paper proposes a parametrization of the rank distribution to analyze the punishment dictionary of the Special Part of the Criminal Code of the Russian Federation concerning punishments for economic crimes. Various versions of the code are considered, and the constructed model was shown to reflect objectively undertaken over time by legislators its changes for the better. For the Criminal Codes in force in the Federal Republic of Germany and the People’s Republic of China, the texts including similar offenses and analogous to the Russian special section of the Special Part were studied. The rank distributions obtained in the article for the corresponding frequency dictionaries of codes coincide with those obtained by V. P. Maslov’s law, which essentially clarifies Zipf’s law. This allows us to conclude both the good text organization and the adequacy of the selected punishments for crimes.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.