Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'exponential smoothing':
Найдено статей: 2
  1. Игнашин И.Н., Ярмошик Д.В.
    Модификации алгоритма Frank–Wolfe в задаче поиска равновесного распределения транспортных потоков
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 53-68

    В работе приведены различные модификации алгоритма Frank–Wolfe для задачи поиска равновесного распределения потоков. В качестве модели для экспериментов используется модель Бекмана. В этой статье в первую очередь уделяется внимание выбору направления базового шага алгоритма Frank–Wolfe (FW). Будут представлены алгоритмы: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank–Wolfe (FFW). Каждой модификации соответствуют различные подходы к выбору этого направления. Некоторые из этих модификаций описаны в предыдущих работах авторов. В данной статье будут предложены алгоритмы N-conjugate Frank–Wolfe (NFW) и Weighted Fukushima Frank–Wolfe (WFFW). Эти алгоритмы являются некоторым идейным продолжением алгоритмов BFW и FFW. Таким образом, если первый алгоритм использовал на каждой итерации два последних направления предыдущих итераций для выбора следующего направления, сопряженного к ним, то предложенный алгоритм NFW использует $N$ предыдущих направлений. В случае же Fukushima Frank –Wolfe в качестве следующего направления берется среднее от нескольких предыдущих направлений. Соответственно этому алгоритму предложена модификация WFFW, использующая экспоненциальное сглаживание по предыдущим направлениям. Для сравнительного анализа были проведены эксперименты с различными модификациями на нескольких наборах данных, представляющих городские структуры и взятых из общедоступных источников. За метрику качества была взята величина относительного зазора. Результаты экспериментов показали преимущество алгоритмов, использующих предыдущие направления для выбора шага, перед классическим алгоритмом Frank–Wolfe. Кроме того, было выявлено улучшение эффективности при использовании более двух сопряженных направлений. Например, на многих датасетах модификация 3-conjugate FW сходилась наилучшим образом. Кроме того, предложенная модификация WFFW зачастую обгоняла FFW и CFW, хотя и проигрывала модификациям NFW.

    Ignashin I.N., Yarmoshik D.V.
    Modifications of the Frank –Wolfe algorithm in the problem of finding the equilibrium distribution of traffic flows
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 53-68

    The paper presents various modifications of the Frank–Wolfe algorithm in the equilibrium traffic assignment problem. The Beckman model is used as a model for experiments. In this article, first of all, attention is paid to the choice of the direction of the basic step of the Frank–Wolfe algorithm. Algorithms will be presented: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank –Wolfe (FFW). Each modification corresponds to different approaches to the choice of this direction. Some of these modifications are described in previous works of the authors. In this article, following algorithms will be proposed: N-conjugate Frank–Wolfe (NFW), Weighted Fukushima Frank–Wolfe (WFFW). These algorithms are some ideological continuation of the BFW and FFW algorithms. Thus, if the first algorithm used at each iteration the last two directions of the previous iterations to select the next direction conjugate to them, then the proposed algorithm NFW is using more than $N$ previous directions. In the case of Fukushima Frank–Wolfe, the average of several previous directions is taken as the next direction. According to this algorithm, a modification WFFW is proposed, which uses a exponential smoothing from previous directions. For comparative analysis, experiments with various modifications were carried out on several data sets representing urban structures and taken from publicly available sources. The relative gap value was taken as the quality metric. The experimental results showed the advantage of algorithms using the previous directions for step selection over the classic Frank–Wolfe algorithm. In addition, an improvement in efficiency was revealed when using more than two conjugate directions. For example, on various datasets, the modification 3FW showed the best convergence. In addition, the proposed modification WFFW often overtook FFW and CFW, although performed worse than NFW.

  2. Кондратьев М.А.
    Методы прогнозирования и модели распространения заболеваний
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882

    Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.

    Kondratyev M.A.
    Forecasting methods and models of disease spread
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882

    The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).

    Просмотров за год: 71. Цитирований: 19 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.