Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'domains':
Найдено статей: 82
  1. Сорокин К.Э., Аксёнов А.А., Жлуктов С.В., Бабулин А.А., Шевяков В.И.
    Методика расчета обледенения воздушных судов в широком диапазоне климатических и скоростных параметров. Применение в рамках норм летной годности НЛГ-25
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 957-978

    Сертификация самолетов транспортной категории для эксплуатации в условияхо бледенения в России ранее проводилась в рамках требований приложения С к «Авиационным правилам» (АП-25). Во введенном в действие с 2023 года, взамен АП-25, документе «Нормы летной годности» (НЛГ-25) добавлено и приложение О. Отличительной особенностью приложения О является необходимость проведения расчетов в условиях большой водности и с крупными каплями воды (500 мкм и более). При таких параметрах дисперсного потока определяющими становятся такие физические процессы, как срыв и разбрызгивание пленки воды при попадании в нее крупных капель. Поток дисперсной среды в такиху словиях является существенно полидисперсным. В данной работе описываются модификации методики расчета обледенения самолетов IceVision, реализованной на базе программного комплекса FlowVision, необходимые для проведения расчетов обледенения самолетов в рамках приложения О.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume of fluid (VOF — объем жидкости в ячейке) для отслеживания изменения формы льда. Внешнее обтекание самолета рассчитывается одновременно с нарастанием льда и его прогревом. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В отличие от лагранжевых подходов, в IceVision эйлерова расчетная сетка не перестраивается полностью. Изменение объема льда сопровождается только модификацией ячеек сетки, через которые проходит контактная поверхность.

    В версии IceVision 2.0 реализован учет срыва водяной пленки, а также отскока и разбрызгивания падающих капель на поверхности самолета и льда. Диаметр вторичных капель рассчитывается с использованием известных эмпирических корреляций. Скорость течения пленки воды по поверхности определяется с учетом действия аэродинамических сил, силы тяжести, градиента гидростатического давления и силы поверхностного натяжения. Результатом учета поверхностного натяжения является эффект поперечного стягивания пленки, приводящий к образованию потоков воды в форме ручейков и ледяных отложений в виде гребнеобразных наростов. На поверхности льда выполняется балансовое соотношение, учитывающее энергию падающих капель, теплообмен между льдом и воздухом, теплоту кристаллизации, испарения, сублимации и конденсации. В работе приводятся результаты решения тестовых и модельных расчетных задач, демонстрирующие эффективность методики IceVision и достоверность полученных результатов.

    Sorokin K.E., Aksenov A.A., Zhluktov S.V., Babulin A.A., Shevyakov V.I.
    Methodology of aircraft icing calculation in a wide range of climate and speed parameters. Applicability within the NLG-25 airworthiness standards
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 957-978

    Certifying a transport airplane for the flights under icing conditions in Russia was carried out within the framework of the requirements of Annex С to the AP-25 Aviation Rules. In force since 2023 to replace AP-25 the new Russian certification document “Airworthiness Standards” (NLG-25) proposes the introduction of Appendix O. A feature of Appendix O is the need to carry out calculations in conditions of high liquid water content and with large water drops (500 microns or more). With such parameters of the dispersed flow, such physical processes as the disruption and splashing of a water film when large drops enter it become decisive. The flow of a dispersed medium under such conditions is essentially polydisperse. This paper describes the modifications of the IceVision technique implemented on the basis of the FlowVision software package for the ice accretion calculations within the framework of Appendix O.

    The main difference between the IceVision method and the known approaches is the use of the Volume of fluid (VOF) technology to the shape of ice changes tracking. The external flow around the aircraft is calculated simultaneously with the growth of ice and its heating. Ice is explicitly incorporated in the computational domain; the heat transfer equation is solved in it. Unlike the Lagrangian approaches, the Euler computational grid is not completely rebuilt in the IceVision technique: only the cells containing the contact surface are changed.

    The IceVision 2.0 version accounts for stripping the film, as well as bouncing and splashing of falling drops at the surfaces of the aircraft and ice. The diameter of secondary droplets is calculated using known empirical correlations. The speed of the water film flow over the surface is determined taking into account the action of aerodynamic forces, gravity, hydrostatic pressure gradient and surface tension force. The result of taking into account surface tension is the effect of contraction of the film, which leads to the formation of water flows in the form of rivulets and ice deposits in the form of comb-like growths. An energy balance relation is fulfilled on the ice surface that takes into account the energy of falling drops, heat exchange between ice and air, the heat of crystallization, evaporation, sublimation and condensation. The paper presents the results of solving benchmark and model problems, demonstrating the effectiveness of the IceVision technique and the reliability of the obtained results.

  2. Абрамова Е.П., Рязанова Т.В.
    Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531

    В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.

    Abramova E.P., Ryazanova T.V.
    Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531

    We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.

    Просмотров за год: 28.
  3. Заботин В.И., Чернышевский П.А.
    Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1111-1119

    The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.

    Zabotin, V.I., Chernyshevskij P.A.
    Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1111-1119

    The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.

  4. Остроухов П.А.
    Тензорные методы внутри смешанного оракула для решения задач типа min-min
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 377-398

    В данной статье рассматривается задача типа min-min: минимизация по двум группам переменных. Данная задача в чем-то похожа на седловую (min-max), однако лишена некоторых сложностей, присущих седловым задачам. Такого рода постановки могут возникать, если в задаче выпуклой оптимизации присутствуют переменные разных размерностей или если какие-то группы переменных определены на разных множествах. Подобная структурная особенность проблемы дает возможность разбивать ее на подзадачи, что позволяет решать всю задачу с помощью различных смешанных оракулов. Ранее в качестве возможных методов для решения внутренней или внешней задачи использовались только методы первого порядка или методы типа эллипсоидов. В нашей работе мы рассматриваем данный подход с точки зрения возможности применения алгоритмов высокого порядка (тензорных методов) для решения внутренней подзадачи. Для решения внешней подзадачи мы используем быстрый градиентный метод.

    Мы предполагаем, что внешняя подзадача определена на выпуклом компакте, в то время как для внутренней задачи мы отдельно рассматриваем задачу без ограничений и определенную на выпуклом компакте. В связи с тем, что тензорные методы по определению используют производные высокого порядка, время на выполнение одной итерации сильно зависит от размерности решаемой проблемы. Поэтому мы накладываем еще одно условие на внутреннюю подзадачу: ее размерность не должна превышать 1000. Для возможности использования смешанного оракула намнео бходимы некоторые дополнительные предположения. Во-первых, нужно, чтобы целевой функционал был выпуклымпо совокупности переменных и чтобы его градиент удовлетворял условию Липшица также по совокупности переменных. Во-вторых, нам необходимо, чтобы целевой функционал был сильно выпуклый по внутренней переменной и его градиент по внутренней переменной удовлетворял условию Липшица. Также для применения тензорного метода нам необходимо выполнение условия Липшица p-го порядка ($p > 1$). Наконец, мы предполагаем сильную выпуклость целевого функционала по внешней переменной, чтобы иметь возможность использовать быстрый градиентный метод для сильно выпуклых функций.

    Стоит отметить, что в качестве метода для решения внутренней подзадачи при отсутствии ограничений мы используем супербыстрый тензорный метод. При решении внутренней подзадачи на компакте используется ускоренный проксимальный тензорный метод для задачи с композитом.

    В конце статьи мы также сравниваем теоретические оценки сложности полученных алгоритмов с быстрым градиентным методом, который не учитывает структуру задачи и решает ее как обычную задачу выпуклой оптимизации (замечания 1 и 2).

    Ostroukhov P.A.
    Tensor methods inside mixed oracle for min-min problems
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 377-398

    In this article we consider min-min type of problems or minimization by two groups of variables. In some way it is similar to classic min-max saddle point problem. Although, saddle point problems are usually more difficult in some way. Min-min problems may occur in case if some groups of variables in convex optimization have different dimensions or if these groups have different domains. Such problem structure gives us an ability to split the main task to subproblems, and allows to tackle it with mixed oracles. However existing articles on this topic cover only zeroth and first order oracles, in our work we consider high-order tensor methods to solve inner problem and fast gradient method to solve outer problem.

    We assume, that outer problem is constrained to some convex compact set, and for the inner problem we consider both unconstrained case and being constrained to some convex compact set. By definition, tensor methods use high-order derivatives, so the time per single iteration of the method depends a lot on the dimensionality of the problem it solves. Therefore, we suggest, that the dimension of the inner problem variable is not greater than 1000. Additionally, we need some specific assumptions to be able to use mixed oracles. Firstly, we assume, that the objective is convex in both groups of variables and its gradient by both variables is Lipschitz continuous. Secondly, we assume the inner problem is strongly convex and its gradient is Lipschitz continuous. Also, since we are going to use tensor methods for inner problem, we need it to be p-th order Lipschitz continuous ($p > 1$). Finally, we assume strong convexity of the outer problem to be able to use fast gradient method for strongly convex functions.

    We need to emphasize, that we use superfast tensor method to tackle inner subproblem in unconstrained case. And when we solve inner problem on compact set, we use accelerated high-order composite proximal method.

    Additionally, in the end of the article we compare the theoretical complexity of obtained methods with regular gradient method, which solves the mentioned problem as regular convex optimization problem and doesn’t take into account its structure (Remarks 1 and 2).

  5. Калуцкий Н.С.
    Методика работы с унаследованными информационными системами
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 331-344

    В данной статье предлагается методика работы с унаследованными информационными системами. В процессе профессиональной деятельности специалистам в области машиностроения приходится сталкиваться с тем, что компьютерные приложения, с помощью которых было спроектировано изделие, устаревают значительно быстрее, чем само изделие. В тоже время переход на современные информационные системы может быть затруднен по ряду причин. В таком случае говорят о проблеме унаследованных систем. Она возникает тогда, когда жизненный цикл изделия намного превосходит время жизни программных систем, с помощью которых это изделие создавалось. Для решения этой проблемы в настоящей статье автором предлагается методика, на основе которой был разработан программный комплекс.

    Kalutsky N.S.
    Methodic of legacy information systems handling
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 331-344

    In this article a method of legacy information systems handling is offered. During professional activities of specialists of various domains of industry they face with the problem that computer software that was involved in product development stage becomes obsolete much quickly than the product itself. At the same time switch to any modern software might be not possible due to various reasons. This problem is known as "legacy system" problem. It appears when product lifecycle is sufficiently longer than that of software systems that were used for product creation. In this article author offers an approach for solving this problem along with computer application based on this approach.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  6. Ревуцкая О.Л., Кулаков М.П., Фрисман Е.Я.
    Влияние изъятия на динамику численности сообщества «хищник–жертва» с учетом возрастной структуры жертвы
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 823-844

    В работе изучено влияние избирательного антропогенного изъятия на режимы динамики сообщества «хищник–жертва» с возрастной структурой. Исследуемая модель представляет собой модификацию модели Николсона–Бейли. Предполагается, что регуляция роста численности популяции жертвы осуществляется путем лимитирования выживаемости молоди. Целью работы является изучение механизмов формирования и развития динамических режимов, возникающих в модели динамики сообщества «хищник–жертва» с возрастной структурой жертвы при избирательном изъятии особей. Рассмотрены случаи, когда осуществляется изъятие только из младшего, либо только из старшего возрастного класса жертвы, либо из двух возрастных классов жертвы одновременно, либо из популяции хищника. Изучены условия устойчивого сосуществования взаимодействующих видов и сценарии возникновения колебательных режимов численности. Показано, что изъятие только молодых особей жертвы или одновременное изъятие молодых и взрослых особей приводит к расширению области значений параметров, при которых наблюдается устойчивая динамика популяции жертвы как при наличии хищника, так и без него. При этом уменьшается диапазон значений параметров, при которых отмечается бистабильность динамики, когда в зависимости от начальных условий хищник либо сохраняется в сообществе либо погибает от недостатка питания. В случае изъятия части взрослых особей жертв или хищников сохранение хищника в сообществе обеспечивается высокими значениями коэффициента рождаемости жертвы, причем при этом увеличивается параметрическая область бистабильности динамики. При изъятии как молоди жертвы, так и хищников увеличение значений выживаемости взрослых особей жертв приводит к стабилизации дина- мики видов. Продемонстрировано, что изъятие части молодых особей жертв может приводить к затуханию колебаний и стабилизировать динамику жертвы в отсутствие хищника. Более того, оно может изменить сценарий сосуществования видов — от обитания жертвы без хищника к устойчивому сосуществованию обоих видов. Выявлено, что изъятие особей жертв либо только из ее старшего возрастного класса, либо из популяции хищника может приводить к затуханию колебаний и устойчивой динамике взаимодействующего сообщества или к разрушению сообщества, то есть к гибели хищника.

    Revutskaya O.L., Kulakov M.P., Frisman E.Y.
    Influence of harvesting on the dynamics of predator-prey community with age-structure for prey
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 823-844

    The paper studies the influence of selective harvest on dynamic modes of the «predator–prey» community with age structure for prey. We use a slight modification of the Nicholson-Bailey model to describe the interaction between predator and prey. We assume the prey population size is regulated by a decrease in survival rate of juvenile with an increase in the size of age class. The aim is to study the mechanisms of formation and evolution of dynamic modes for the structured «predator–prey» community model due to selective harvesting. We considered the cases when a harvest of some part of predator or prey population or one of the prey’s age classes is realized. The conditions of stable coexistence of interacting species and scenarios of the occurrence of oscillatory modes of abundance are studied. It is shown the harvesting of only young individuals of prey or simultaneous removal of young and adult individuals leads to expansion of parameter space domain with stable dynamics of prey population both with and without a predator. At the same time, the bistability domain narrows, in which changing initial conditions leads to the predator either remains in the community or dies from lack of food. In the case of the harvest for prey adult individuals or predator, the predator preservation in the community is ensured by high values of the prey birth rate, moreover bistability domain expands. With the removal of both juvenile preys and predators, an increase in the survival rates of adult prey leads to stabilization of the community dynamics. The juveniles’ harvest can lead to damping of oscillations and stabilize the prey dynamics in the predator absence. Moreover, it can change the scenario of the coexistence of species — from habitation of preys without predators to a sustainable coexistence of both species. The harvest of some part of predator or prey or the prey’s older age class can lead to both oscillations damping and stable dynamics of the interacting species, and to the destruction of the community, that is, to the death of predator.

  7. Воронцова Д.В., Исаева М.В., Меньшиков И.А., Орлов К.Ю., Бернадотт А.К.
    Частотные, временные и пространственные изменения электроэнцефалограммы после COVID-19 при выполнении простого речевого задания
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 691-701

    Используя анализ данных и применение нейронных сетей в нашей работе, мы выявили закономерности электрической активности мозга, характеризующие COVID-19. Нас интересовали частотные, временные и пространственные паттерны электрической активности у людей, перенесших COVID-19. Мы обнаружили преобладание паттернов $\alpha$-ритма в левом полушарии у здоровых людей по сравнению с людьми, переболевшими COVID-19. Более того, мы наблюдаем значительное снижение вклада левого полушария в области речевого центра у людей, перенесших COVID-19, при выполнении речевых заданий. Наши результаты показывают, что сигнал у здоровых людей более пространственно локализован и синхронизирован между полушариями при выполнении задач по сравнению с людьми, перенесшими COVID-19. Мы также наблюдали снижение низких частот в обоих полушариях после COVID-19. Электроэнцефалографические (ЭЭГ) паттерны COVID-19 обнаруживаются в необычной частотной области. То, что обычно считается шумом в ЭЭГ-данных, несет в себе информацию, по которой можно определить, переболел ли человек COVID-19. Эти паттерны можно интерпретировать как признаки десинхронизации полушарий, преждевременного старения мозга и стресса при выполнении простых задач по сравнению с людьми без COVID-19 в анамнезе. В нашей работе мы показали применимость нейронных сетей для выявления долгосрочных последствий COVID-19 на данные ЭЭГ. Кроме того, наши данные подтвердили гипотезу о тяжести последствий COVID-19, обнаруженных по ЭЭГ-данным. Представленные результаты функциональной активности мозга позволяют использовать методы машинного обучения на простых неинвазивных интерфейсах «мозг–компьютер» для выявления пост-COVID-синдрома и прогресса в нейрореабилитации.

    Vorontsova D.V., Isaeva M.V., Menshikov I.A., Orlov K.Y., Bernadotte A.
    Frequency, time, and spatial electroencephalogram changes after COVID-19 during a simple speech task
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 691-701

    We found a predominance of α-rhythm patterns in the left hemisphere in healthy people compared to people with COVID-19 history. Moreover, we observe a significant decrease in the left hemisphere contribution to the speech center area in people who have undergone COVID-19 when performing speech tasks.

    Our findings show that the signal in healthy subjects is more spatially localized and synchronized between hemispheres when performing tasks compared to people who recovered from COVID-19. We also observed a decrease in low frequencies in both hemispheres after COVID-19.

    EEG-patterns of COVID-19 are detectable in an unusual frequency domain. What is usually considered noise in electroencephalographic (EEG) data carries information that can be used to determine whether or not a person has had COVID-19. These patterns can be interpreted as signs of hemispheric desynchronization, premature brain ageing, and more significant brain strain when performing simple tasks compared to people who did not have COVID-19.

    In our work, we have shown the applicability of neural networks in helping to detect the long-term effects of COVID-19 on EEG-data. Furthermore, our data following other studies supported the hypothesis of the severity of the long-term effects of COVID-19 detected on the EEG-data of EEG-based BCI. The presented findings of functional activity of the brain– computer interface make it possible to use machine learning methods on simple, non-invasive brain–computer interfaces to detect post-COVID syndrome and develop progress in neurorehabilitation.

  8. Жаркова В.В., Щеляев А.Е., Фишер Ю.В.
    Численное моделирование внешнего обтекания спортсмена
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344

    В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:

    1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;

    2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;

    3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.

    Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.

    Zharkova V.V., Schelyaev A.E., Fisher J.V.
    Numerical simulation of sportsman's external flow
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 331-344

    Numerical simulation of moving sportsman external flow is presented. The unique method is developed for obtaining integral aerodynamic characteristics, which were the function of the flow regime (i.e. angle of attack, flow speed) and body position. Individual anthropometric characteristics and moving boundaries of sportsman (or sports equipment) during the race are taken into consideration.

    Numerical simulation is realized using FlowVision CFD. The software is based on the finite volume method, high-performance numerical methods and reliable mathematical models of physical processes. A Cartesian computational grid is used by FlowVision, the grid generation is a completely automated process. Local grid adaptation is used for solving high-pressure gradient and object complex shape. Flow simulation process performed by solutions systems of equations describing movement of fluid and/or gas in the computational domain, including: mass, moment and energy conservation equations; state equations; turbulence model equations. FlowVision permits flow simulation near moving bodies by means of computational domain transformation according to the athlete shape changes in the motion. Ski jumper aerodynamic characteristics are studied during all phases: take-off performance in motion, in-run and flight. Projected investigation defined simulation method, which includes: inverted statement of sportsman external flow development (velocity of the motion is equal to air flow velocity, object is immobile); changes boundary of the body technology defining; multiple calculations with the national team member data projecting. The research results are identification of the main factors affected to jumping performance: aerodynamic forces, rotating moments etc. Developed method was tested with active sportsmen. Ski jumpers used this method during preparations for Sochi Olympic Games 2014. A comparison of the predicted characteristics and experimental data shows a good agreement. Method versatility is underlined by performing swimmer and skater flow simulation. Designed technology is applicable for sorts of natural and technical objects.

    Просмотров за год: 29.
  9. Elaraby A.E., Nechaevskiy A.V.
    An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 195-202

    Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.

    Elaraby A.E., Nechaevskiy A.V.
    An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 195-202

    Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.

  10. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

    Aksenov A.A., Zhluktov S.V., Pokhilko V.I., Sorokin K.E.
    Implicit algorithm for solving equations of motion of incompressible fluid
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1009-1023

    A large number of methods have been developed to solve the Navier – Stokes equations in the case of incompressible flows, the most popular of which are methods with velocity correction by the SIMPLE algorithm and its analogue — the method of splitting by physical variables. These methods, developed more than 40 years ago, were used to solve rather simple problems — simulating both stationary flows and non-stationary flows, in which the boundaries of the calculation domain were stationary. At present, the problems of computational fluid dynamics have become significantly more complicated. CFD problems are involving the motion of bodies in the computational domain, the motion of contact boundaries, cavitation and tasks with dynamic local adaptation of the computational mesh. In this case the computational mesh changes resulting in violation of the velocity divergence condition on it. Since divergent velocities are used not only for Navier – Stokes equations, but also for all other equations of the mathematical model of fluid motion — turbulence, mass transfer and energy conservation models, violation of this condition leads to numerical errors and, often, to undivergence of the computational algorithm.

    This article presents an implicit method of splitting by physical variables that uses divergent velocities from a given time step to solve the incompressible Navier – Stokes equations. The method is developed to simulate flows in the case of movable and contact boundaries treated in the Euler paradigm. The method allows to perform computations with the integration step exceeding the explicit time step by orders of magnitude (Courant – Friedrichs – Levy number $CFL\gg1$). This article presents a variant of the method for incompressible flows. A variant of the method that allows to calculate the motion of liquid and gas at any Mach numbers will be published shortly. The method for fully compressible flows is implemented in the software package FlowVision.

    Numerical simulating classical fluid flow around circular cylinder at low Reynolds numbers ($50 < Re < 140$), when laminar flow is unsteady and the Karman vortex street is formed, are presented in the article. Good agreement of calculations with the experimental data published in the classical works of Van Dyke and Taneda is demonstrated.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.