Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Блуждающие симметрии уравнений Лагранжа
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 13-17Динамический процесс в равной степени адекватно моделируется семейством уравнений Лагранжа. Группа симметрий блуждает по этому семейству: системы переходят одна в другую. При определенных условиях по нескольким таким группам простыми вычислениями можно получить первый интеграл. Основная цель работы – показать полезность понятия блуждающей симметрии. Рассмотрен пример: плоское движение заряженной частицы в магнитном поле при наличии вязкого трения. При помощи трех блуждающих симметрий вычисляется первый интеграл.
Ключевые слова: уравнения Лагранжа, вариационные симметрии, дивергентные симметрии, конформные симметрии, блуждающие симметрии, первые интегралы.
Wandering symmetries of the Lagrange's equations
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 13-17Просмотров за год: 4.The dynamic process can be in equal degree adequately prototyped by a family of Lagrange's systems. Symmetry group ‘wanders’ on this family: systems are transformed from one into another. In this work we show that under determined condition the first integral can be obtained by a simple calculations on some of such groups. The main purpose of the work is to show usefulness of wandering symmetry concept. The considered example: flat motion of a charged particle in magnetic field in presence of viscous friction. With the help of three wandering symmetry first integral is calculated.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"