Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.
Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.
В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.
Ключевые слова: некоммутативное интегрирование, Бъянки IX.
Integration the relativistic wave equations in Bianchi IX cosmology model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.
Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.
The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.
Keywords: noncommutative integration, Bianchi IX.Просмотров за год: 5. -
Космологические модели Вселенной, не имеющей Начала и сингулярности
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 473-486Предлагается новый тип космологических моделей, космологических моделей для Вселенной, не имеющей Начала, то есть существовавшей всегда, и эволюционирующей из бесконечно далекого прошлого.
Предлагаемые космологические модели являются альтернативными по отношению к космологическим моделям, основывающимся на так называемой теории Большого взрыва, по которой Вселенная имеет конечный возраст и произошла из начальной сингулярности.
В этой теории, по нашему мнению, есть определенные проблемы, которые в предлагаемых нами космологических моделях мы избегаем.
В наших космологических моделях Вселенная, развиваясь из бесконечно далекого прошлого, сжимаясь, достигает конечного минимума расстояний между объектами порядка комптоновской длины волны $\lambda_C$ адронов и максимальной плотности вещества, соответствующей адронной эре Вселенной, и затем расширяется, проходя все стадии своей эволюции, установленные астрономическими наблюдениями, вплоть до эры инфляции.
Материальной основой, обеспечивающей принципиальный характер эволюции Вселенной в предлагаемых космологических моделях, является нелинейное дираковское спинорное поле $\psi (x^k)$ с нелинейностью в лагранжиане поля типа $\beta (\bar\psi\psi)^n$ ($\beta = const$, $n$ — рациональное число), где $\psi(x^k)$ — 4-компонентный дираковский спинор, а $\bar{\psi}$ — сопряженный спинор.
Кроме спинорного поля $\psi$ в космологических моделях у нас присутствуют и другие компоненты материи в виде идеальной жидкости с уравнением состояния $p = w\varepsilon$ ($w = const$), при различных значениях коэффициента $w$ $(−1 < w < 1)$, которые обеспечивают эволюцию Вселенной с надлежащими периодами развития в соответствии с установленными наблюдаемыми данными. Здесь $p$ — давление, $\varepsilon = \rho c^2$ — плотность энергии, $\rho$ — плотность массы, а $c$ — скорость света в вакууме.
Оказалось, что наиболее близкими к реальности являются космологические модели с нелинейным спинорным полем с показателем нелинейности $n = 2$.
В этом случае нелинейное спинорное поле представляется уравнением Дирака с кубической нелинейностью.
Но такое уравнение есть нелинейное спинорное уравнение Иваненко–Гейзенберга, которое В. Гейзенберг взял в качестве основы для построения единой спинорной теории материи.
Удивительное совпадение, что одно и то же нелинейное спинорное уравнение может быть основой для построения теории двух разных фундаментальных объектов природы, эволюционирующей Вселенной и физической материи.
Разработки представляемых космологических моделей дополняются их компьютерными исследованиями, результаты которых в работе представлены графически.
Ключевые слова: космологические модели, гравитация, спинорное поле, нелинейность, эволюция Вселенной, компьютерные исследования.
Cosmological models of the Universe without a Beginning and without a singularity
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.
These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.
In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.
In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.
The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.
In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.
We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.
In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.
But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.
It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.
The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"