Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.
Ключевые слова: седловая задача, невыпуклая оптимизация, равномерно выпуклая функция, неточный оракул, метод высшего порядка.
An approach for the nonconvex uniformly concave structured saddle point problem
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.
-
Современные методы преодоления катастрофической забывчивости нейронных сетей и экспериментальная проверка вопросов их структуры
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 45-56В данной работе представлены результаты экспериментальной проверки некоторых вопросов, касающихся практического использования методов преодоления катастрофической забывчивости нейронных сетей. Проведено сравнение двух таких современных методов: метода эластичного закрепления весов (EWC, Elastic Weight Consolidation) и метода ослабления скоростей весов (WVA, Weight Velocity Attenuation). Разобраныих преимущества и недостатки в сравнении друг с другом. Показано, что метод эластичного закрепления весов (EWC) лучше применять в задачах, где требуется полностью сохранять выученные навыки на всех задачах в очереди обучения, а метод ослабления скоростей весов (WVA) больше подходит для задач последовательного обучения с сильно ограниченными вычислительными ресурсами или же когда требуется не точное сохранение всех навыков, а переиспользование репрезентаций и ускорение обучения от задачи к задаче. Проверено и подтверждено интуитивное предположение, что ослабление метода WVA необходимо применять к оптимизационному шагу, то есть к приращениям весов нейронной сети, а не к самому градиенту функции потерь, и это справедливо для любого градиентного оптимизационного метода, кроме простейшего стохастического градиентного спуска (SGD), для которого оптимизационный шаг и градиент функции потерь пропорциональны. Рассмотрен выбор оптимальной функции ослабления скоростей весов между гиперболической функцией и экспонентой. Показано, что гиперболическое убывание более предпочтительно, так как, несмотря на сравнимое качество при оптимальных значениях гиперпараметра метода WVA, оно более устойчиво к отклонениям гиперпараметра от оптимального значения (данный гиперпараметр в методе WVA обеспечивает баланс между сохранением старых навыков и обучением новой задаче). Приведены эмпирические наблюдения, которые подтверждают гипотезу о том, что оптимальное значение гиперпараметра не зависит от числа задач в очереди последовательного обучения. Следовательно, данный гиперпараметр может подбираться на небольшом числе задач, а использоваться — на более длинных последовательностях.
Ключевые слова: катастрофическая забывчивость, эластичное закрепление весов, EWC, ослабление скоростей весов, WVA, нейронные сети, последовательное обучение, машинное обучение, искусственный интеллект.
Modern ways to overcome neural networks catastrophic forgetting and empirical investigations on their structural issues
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 45-56This paper presents the results of experimental validation of some structural issues concerning the practical use of methods to overcome catastrophic forgetting of neural networks. A comparison of current effective methods like EWC (Elastic Weight Consolidation) and WVA (Weight Velocity Attenuation) is made and their advantages and disadvantages are considered. It is shown that EWC is better for tasks where full retention of learned skills is required on all the tasks in the training queue, while WVA is more suitable for sequential tasks with very limited computational resources, or when reuse of representations and acceleration of learning from task to task is required rather than exact retention of the skills. The attenuation of the WVA method must be applied to the optimization step, i. e. to the increments of neural network weights, rather than to the loss function gradient itself, and this is true for any gradient optimization method except the simplest stochastic gradient descent (SGD). The choice of the optimal weights attenuation function between the hyperbolic function and the exponent is considered. It is shown that hyperbolic attenuation is preferable because, despite comparable quality at optimal values of the hyperparameter of the WVA method, it is more robust to hyperparameter deviations from the optimal value (this hyperparameter in the WVA method provides a balance between preservation of old skills and learning a new skill). Empirical observations are presented that support the hypothesis that the optimal value of this hyperparameter does not depend on the number of tasks in the sequential learning queue. And, consequently, this hyperparameter can be picked up on a small number of tasks and used on longer sequences.
-
Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.
Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.
Ключевые слова: стохастическая оптимизация, выпуклая оптимизация, выпукло-вогнутая оптимизация, острый минимум, условие квадратичного роста.
Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 381-391Stochastic optimization is a current area of research due to significant advances in machine learning and their applications to everyday problems. In this paper, we consider two fundamentally different methods for solving the problem of stochastic optimization — online and offline algorithms. The corresponding algorithms have their qualitative advantages over each other. So, for offline algorithms, it is required to solve an auxiliary problem with high accuracy. However, this can be done in a distributed manner, and this opens up fundamental possibilities such as, for example, the construction of a dual problem. Despite this, both online and offline algorithms pursue a common goal — solving the stochastic optimization problem with a given accuracy. This is reflected in the comparison of the computational complexity of the described algorithms, which is demonstrated in this paper.
The comparison of the described methods is carried out for two types of stochastic problems — convex optimization and saddles. For problems of stochastic convex optimization, the existing solutions make it possible to compare online and offline algorithms in some detail. In particular, for strongly convex problems, the computational complexity of the algorithms is the same, and the condition of strong convexity can be weakened to the condition of $\gamma$-growth of the objective function. From this point of view, saddle point problems are much less studied. Nevertheless, existing solutions allow us to outline the main directions of research. Thus, significant progress has been made for bilinear saddle point problems using online algorithms. Offline algorithms are represented by just one study. In this paper, this example demonstrates the similarity of both algorithms with convex optimization. The issue of the accuracy of solving the auxiliary problem for saddles was also worked out. On the other hand, the saddle point problem of stochastic optimization generalizes the convex one, that is, it is its logical continuation. This is manifested in the fact that existing results from convex optimization can be transferred to saddles. In this paper, such a transfer is carried out for the results of the online algorithm in the convex case, when the objective function satisfies the $\gamma$-growth condition.
-
Разработка интеллектуальной системы определения объемно-весовых характеристик груза
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 437-450Промышленная обработка изображений или «машинное зрение» в настоящее время является ключевой технологией во многих отраслях, поскольку эта технология может использоваться для оптимизации различных процессов. Целью настоящей работы является создание программно-аппаратного комплекса измерения габаритно-весовых характеристик груза на базе интеллектуальной системы, основанной на нейросетевых способах идентификации, позволяющих преодолеть технологические ограничения аналогичных комплексов, реализованных на ультразвуковых и инфракрасных измерительных датчиках. Разрабатываемый комплекс будет производить измерения грузов без ограничения на объемные и весовые характеристики груза, который необходимо тарифицировать и сортировать в рамках работы складских комплексов. В состав системы будет входить интеллектуальная компьютерная программа, определяющая объемно-весовые характеристики груза с использованием технологии машинного зрения и экспериментальный образец стенда измерения объёма и веса груза.
Проведен анализ исследований, посвященных решению аналогичных задач. Отмечено, что недостатком изученных способов являются очень высокие требования к расположению камеры, а также необходимость ручной работы при вычислении размеров, автоматизировать которую не представляется возможным без существенных доработок. В процессе работы исследованы различные способы распознавания объектов на изображениях с целью проведения предметной фильтрации по наличию груза и измерения его габаритных размеров. Получены удовлетворительные результаты при применении камер, сочетающих в себе как оптический способ захвата изображений, так и инфракрасные датчики. В результате работы разработана компьютерная программа, позволяющая захватывать непрерывный поток с видеокамер Intel RealSense с последующим извлечением из обозначенной области трехмерный объект и вычислять габаритные размеры объекта. На данном этапе выполнено: проведен анализ методик компьютерного зрения; разработан алгоритм для реализации задачи автоматического измерения грузов с использованием специальных камер; разработано программное обеспечение, позволяющее получать габаритные размеры объектов в автоматическом режиме.
Данная разработка по завершении работы может применяться как готовое решение для транспортных компаний, логистических центров, складов крупных производственных и торговых предприятий.
The development of an intelligent system for recognizing the volume and weight characteristics of cargo
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 437-450Industrial imaging or “machine vision” is currently a key technology in many industries as it can be used to optimize various processes. The purpose of this work is to create a software and hardware complex for measuring the overall and weight characteristics of cargo based on an intelligent system using neural network identification methods that allow one to overcome the technological limitations of similar complexes implemented on ultrasonic and infrared measuring sensors. The complex to be developed will measure cargo without restrictions on the volume and weight characteristics of cargo to be tariffed and sorted within the framework of the warehouse complexes. The system will include an intelligent computer program that determines the volume and weight characteristics of cargo using the machine vision technology and an experimental sample of the stand for measuring the volume and weight of cargo.
We analyzed the solutions to similar problems. We noted that the disadvantages of the studied methods are very high requirements for the location of the camera, as well as the need for manual operations when calculating the dimensions, which cannot be automated without significant modifications. In the course of the work, we investigated various methods of object recognition in images to carry out subject filtering by the presence of cargo and measure its overall dimensions. We obtained satisfactory results when using cameras that combine both an optical method of image capture and infrared sensors. As a result of the work, we developed a computer program allowing one to capture a continuous stream from Intel RealSense video cameras with subsequent extraction of a three-dimensional object from the designated area and to calculate the overall dimensions of the object. At this stage, we analyzed computer vision techniques; developed an algorithm to implement the task of automatic measurement of goods using special cameras and the software allowing one to obtain the overall dimensions of objects in automatic mode.
Upon completion of the work, this development can be used as a ready-made solution for transport companies, logistics centers, warehouses of large industrial and commercial enterprises.
-
Решение негладких распределенных минимаксных задач с применением техники сглаживания
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.
Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.
Ключевые слова: выпуклая оптимизация, распределенная оптимизация.
Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.
We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.
Keywords: convex optimization, distributed optimization.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"