Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'community dynamics':
Найдено статей: 21
  1. Suganya G., Jenitta E., Senthamarai R.
    A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 713-729

    The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.

    Suganya G., Jenitta E., Senthamarai R.
    A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 713-729

    The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.

  2. Известно, что скорость звука в средах, содержащих сильно сжимаемые включения, например воздушные поры в упругой среде или газовые пузырьки в жидкости, может существенно уменьшиться по сравнению с однородной средой. Эффективный нелинейный параметр такой среды, описывающий проявление нелинейных эффектов, возрастает в сотни и тысячи раз из-за большого различия сжимаемости включений и окружающей среды. Пространственное изменение концентрации таких включений приводит к переменной локальной скорости звука, что, в свою очередь, вызывает пространственно-временное перераспределение акустической энергии в волне и искажению ее временных профилей и поперечной структуры ограниченных пучков. В частности, могут образовываться области фокусировок. При определенных условиях возможно формирование звукового канала, обеспечивающего волноводное распространение акустических сигналов в среде с подобными включениями. Таким образом, возможно управление пространственно-временной структурой акустических волн с помощью введения сильно сжимаемых включений с заданным пространственным распределением и концентрацией. Целью работы является исследование распространения акустических волн в резиноподобном материале с неоднородным пространственным распределением воздушных полостей. Основной задачей является развитие адекватной теории таких структурно-неоднородных сред, теории распространения нелинейных акустических волн и пучков в этих средах, расчет акустических полей и выявление связи параметров среды и включений с характеристиками распространяющихся волн. В работе выведено эволюционное самосогласованное уравнение с интегро-дифференциальным членом, описывающее в низкочастотном приближении распространение интенсивных акустических пучков в среде с сильно сжимаемым полостями. В этом уравнении учтено вторичное акустическое поле, вызванное динамикой колебаний полостей. Развит метод, позволяющий получить точные аналитические решения для поля нелинейного акустического пучка на его оси и правильно рассчитать поле в фокальных областях. Полученные результаты применены для теоретического моделирования материала с неоднородным распределением сильно сжимаемых включений.

    It is known that the sound speed in medium that contain highly compressible inclusions, e.g. air pores in an elastic medium or gas bubbles in the liquid may be significantly reduced compared to a homogeneous medium. Effective nonlinear parameter of medium, describing the manifestation of nonlinear effects, increases hundreds and thousands of times because of the large differences in the compressibility of the inclusions and the medium. Spatial change in the concentration of such inclusions leads to the variable local sound speed, which in turn calls the spatial-temporal redistribution of acoustic energy in the wave and the distortion of its temporal profiles and cross-section structure of bounded beams. In particular, focal areas can form. Under certain conditions, the sound channel is formed that provides waveguide propagation of acoustic signals in the medium with similar inclusions. Thus, it is possible to control spatial-temporal structure of acoustic waves with the introduction of highly compressible inclusions with a given spatial distribution and concentration. The aim of this work is to study the propagation of acoustic waves in a rubberlike material with non-uniform spatial air cavities. The main objective is the development of an adequate theory of such structurally inhomogeneous media, theory of propagation of nonlinear acoustic waves and beams in these media, the calculation of the acoustic fields and identify the communication parameters of the medium and inclusions with characteristics of propagating waves. In the work the evolutionary self-consistent equation with integro-differential term is obtained describing in the low-frequency approximation propagation of intense acoustic beams in a medium with highly compressible cavities. In this equation the secondary acoustic field is taken into account caused by the dynamics of the cavities oscillations. The method is developed to obtain exact analytical solutions for nonlinear acoustic field of the beam on its axis and to calculate the field in the focal areas. The obtained results are applied to theoretical modeling of a material with non-uniform distribution of strongly compressible inclusions.

    Просмотров за год: 6.
  3. Гиричева Е.Е., Абакумов А.И.
    Пространственно-временная динамика и принцип конкурентного исключения в сообществе
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824

    Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.

    Giricheva E.E., Abakumov A.I.
    Spatiotemporal dynamics and the principle of competitive exclusion in community
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824

    Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.

    Просмотров за год: 11.
  4. Неверова Г.П., Жданова О.Л., Колбина Е.А., Абакумов А.И.
    Планктонное сообщество: влияние зоопланктона на динамику фитопланктона
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 751-768

    Методами математического моделирования оценивается спектр влияния зоопланктона на динамику обилия фитопланктона. Предложена трехкомпонентная модель сообщества «фитопланктон–зоопланктон» с дискретным временем, рассматривающая неоднородность зоопланктона по стадии развития и типу питания, учтено наличие каннибализма в сообществе зоопланктона, в процессе которого зрелые особи некоторых его видов поедают ювенильных. Процессы взаимодействия зоо- и фитопланктона в явном виде учтены в выживаемостях на ранних стадиях жизненного цикла зоопланктона; а также явно рассматривается убыль фитопланктона в результате выедания его биомассы зоопланктоном; используется трофическая функция Холлинга II типа для описания насыщения при потреблении биомассы. Динамика фитопланктонного сообщества представлена уравнением Рикера, что позволяет неявно учитывать ограничение роста биомассы фитопланктона доступностью внешних ресурсов (минерального питания, кислорода, освещенности и т. п.).

    Проанализированы сценарии перехода от стационарной динамики к колебаниям численности фито- и зоопланктона при различных значениях внутрипопуляционных параметров, определяющих характер динамики каждого из составляющих сообщество видов, и параметров их взаимодействия. Основное внимание уделено изучению огромного разнообразия сложной динамики сообщества. В рамках используемой в работе модели, описывающей динамику фитопланктона в отсутствие межвидового взаимодействия, происходит усложнение его динамики через серию бифуркаций удвоения периода. При этом с появлением зоопланктона каскад бифуркаций удвоения периода у фитопланктона и сообщества в целом реализуется раньше (при более низких скоростях воспроизводства клеток фитопланктона), чем в случае, когда фитопланктон развивается изолированно. При этом вариация уровня каннибализма зоопланктона способна значительно изменить как существующий в сообществе режим динамики, так и его бифуркацию; при определенной структуре пищевых отношений зоопланктона возможна реализация сценария Неймарка–Сакера в сообществе. Учитывая, что уровень каннибализма зоопланктона может меняться из-за естественных процессов созревания особей отдельных видов и достижения ими плотоядной стадии, можно ожидать выраженные изменения динамического режима в сообществе: резкие переходы от регулярной к квазипериодической динамике (по сценарию Неймарка–Сакера) и далее к точным циклам с небольшим периодом (обратная реализация каскада удвоения периода).

    Neverova G.P., Zhdanova O.L., Kolbina E.A., Abakumov A.I.
    A plankton community: a zooplankton effect in phytoplankton dynamics
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 751-768

    The paper uses methods of mathematical modeling to estimate a zooplankton influence on the dynamics of phytoplankton abundance. We propose a three-component model of the “phytoplankton–zooplankton” community with discrete time, considering a heterogeneity of zooplankton according to the developmental stage and type of feeding; the model takes into account cannibalism in zooplankton community, during which mature individuals of some of its species consume juvenile ones. Survival rates at the early stages of zooplankton life cycle depend explicitly on the interaction between zooplankton and phytoplankton. Loss of phytoplankton biomass because of zooplankton consumption is explicitly considered. We use the Holling functional response of type II to describe saturation during biomass consumption. The dynamics of the phytoplankton community is represented by the Ricker model, which allows to take into account the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.) implicitly.

    The study analyzed scenarios of the transition from stationary dynamics to fluctuations in the size of phytoand zooplankton for various values of intrapopulation parameters determining the nature of the dynamics of the species constituting the community, and the parameters of their interaction. The focus is on exploring the complex modes of community dynamics. In the framework of the model used for describing dynamics of phytoplankton in the absence of interspecific interaction, phytoplankton dynamics undergoes a series of perioddoubling bifurcations. At the same time, with zooplankton appearance, the cascade of period-doubling bifurcations in phytoplankton and the community as a whole is realized earlier (at lower reproduction rates of phytoplankton cells) than in the case when phytoplankton develops in isolation. Furthermore, the variation in the cannibalism level in zooplankton can significantly change both the existing dynamics in the community and its bifurcation; e.g., with a certain structure of zooplankton food relationships the realization of Neimark–Sacker bifurcation scenario in the community is possible. Considering the cannibalism level in zooplankton can change due to the natural maturation processes and achievement of the carnivorous stage by some individuals, one can expect pronounced changes in the dynamic mode of the community, i.e. abrupt transitions from regular to quasiperiodic dynamics (according to Neimark–Sacker scenario) and further cycles with a short period (the implementation of period halving bifurcation).

    Просмотров за год: 3.
  5. Гиричева Е.Е.
    Анализ неустойчивости системы «хищник–жертва», вызванной таксисом, на примере модели сообщества планктона
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 185-199

    В работе представлена модель типа «хищник–жертва», описывающая пространственно-временную динамику планктонного сообщества с учетом биогенных элементов. Система описывается уравнениями типа «реакция–диффузия–адвекция» в одномерной области, соответствующей вертикальному столбу воды в поверхностном слое. Адвективный член уравнения хищника описывает вертикальные перемещения зоопланктона в направлении градиента фитопланктона. Исследование посвящено определению условий возникновения пространственно-неоднородных структур, генерируемых системой под воздействием этих перемещений (таксиса). В предположении равных коэффициентов диффузии всех компонент модели анализируется неустойчивость системы в окрестности гомогенного равновесия к малым пространственно-неоднородным возмущениям.

    В результате линейного анализа получены условия для возникновения неустойчивости Тьюринга и волновой неустойчивости. Определено, что соотношения между параметрами локальной кинетики системы определяют возможность потери устойчивости системой и тип неустойчивости. В качестве бифуркационного параметра в исследовании рассматривается скорость таксиса. Показано, что при малых значениях этого параметра система устойчива, а начиная с некоторого критического значения устойчивость может теряться, и система способна генерировать либо стационарные пространственно-неоднородные структуры, либо структуры, неоднородные и по времени, и по пространству. Полученные результаты согласуются с ранними исследованиями подобных двухкомпонентных моделей.

    В работе получен интересный результат, указывающий, что бесконечное увеличение скорости таксиса не будет существенно менять вид этих структур. Выявлено, что существует предел величины волнового числа, соответствующего самой неустойчивой моде. Это значение и определяет вид пространственной структуры. В подтверждение полученных результатов в работе приведены варианты пространственно-временной динамики компонент модели в случае неустойчивости Тьюринга и волновой неустойчивости.

    Giricheva E.E.
    Analysis of taxis-driven instability of a predator–prey system through the plankton community model
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 185-199

    The paper deals with a prey-predator model, which describes the spatiotemporal dynamics of plankton community and the nutrients. The system is described by reaction-diffusion-advection equations in a onedimensional vertical column of water in the surface layer. Advective term of the predator equation represents the vertical movements of zooplankton with velocity, which is assumed to be proportional to the gradient of phytoplankton density. This study aimed to determine the conditions under which these movements (taxis) lead to the spatially heterogeneous structures generated by the system. Assuming diffusion coefficients of all model components to be equal the instability of the system in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations is analyzed.

    Necessary conditions for the flow-induced instability were obtained through linear stability analysis. Depending on the local kinetics parameters, increasing the taxis rate leads to Turing or wave instability. This fact is in good agreement with conditions for the emergence of spatial and spatiotemporal patterns in a minimal phytoplankton–zooplankton model after flow-induced instabilities derived by other authors. This mechanism of generating patchiness is more general than the Turing mechanism, which depends on strong conditions on the diffusion coefficients.

    While the taxis exceeding a certain critical value, the wave number corresponding to the fastest growing mode remains unchanged. This value determines the type of spatial structure. In support of obtained results, the paper presents the spatiotemporal dynamics of the model components demonstrating Turing-type pattern and standing wave pattern.

  6. Ревуцкая О.Л., Кулаков М.П., Фрисман Е.Я.
    Влияние изъятия на динамику численности сообщества «хищник–жертва» с учетом возрастной структуры жертвы
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 823-844

    В работе изучено влияние избирательного антропогенного изъятия на режимы динамики сообщества «хищник–жертва» с возрастной структурой. Исследуемая модель представляет собой модификацию модели Николсона–Бейли. Предполагается, что регуляция роста численности популяции жертвы осуществляется путем лимитирования выживаемости молоди. Целью работы является изучение механизмов формирования и развития динамических режимов, возникающих в модели динамики сообщества «хищник–жертва» с возрастной структурой жертвы при избирательном изъятии особей. Рассмотрены случаи, когда осуществляется изъятие только из младшего, либо только из старшего возрастного класса жертвы, либо из двух возрастных классов жертвы одновременно, либо из популяции хищника. Изучены условия устойчивого сосуществования взаимодействующих видов и сценарии возникновения колебательных режимов численности. Показано, что изъятие только молодых особей жертвы или одновременное изъятие молодых и взрослых особей приводит к расширению области значений параметров, при которых наблюдается устойчивая динамика популяции жертвы как при наличии хищника, так и без него. При этом уменьшается диапазон значений параметров, при которых отмечается бистабильность динамики, когда в зависимости от начальных условий хищник либо сохраняется в сообществе либо погибает от недостатка питания. В случае изъятия части взрослых особей жертв или хищников сохранение хищника в сообществе обеспечивается высокими значениями коэффициента рождаемости жертвы, причем при этом увеличивается параметрическая область бистабильности динамики. При изъятии как молоди жертвы, так и хищников увеличение значений выживаемости взрослых особей жертв приводит к стабилизации дина- мики видов. Продемонстрировано, что изъятие части молодых особей жертв может приводить к затуханию колебаний и стабилизировать динамику жертвы в отсутствие хищника. Более того, оно может изменить сценарий сосуществования видов — от обитания жертвы без хищника к устойчивому сосуществованию обоих видов. Выявлено, что изъятие особей жертв либо только из ее старшего возрастного класса, либо из популяции хищника может приводить к затуханию колебаний и устойчивой динамике взаимодействующего сообщества или к разрушению сообщества, то есть к гибели хищника.

    Revutskaya O.L., Kulakov M.P., Frisman E.Y.
    Influence of harvesting on the dynamics of predator-prey community with age-structure for prey
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 823-844

    The paper studies the influence of selective harvest on dynamic modes of the «predator–prey» community with age structure for prey. We use a slight modification of the Nicholson-Bailey model to describe the interaction between predator and prey. We assume the prey population size is regulated by a decrease in survival rate of juvenile with an increase in the size of age class. The aim is to study the mechanisms of formation and evolution of dynamic modes for the structured «predator–prey» community model due to selective harvesting. We considered the cases when a harvest of some part of predator or prey population or one of the prey’s age classes is realized. The conditions of stable coexistence of interacting species and scenarios of the occurrence of oscillatory modes of abundance are studied. It is shown the harvesting of only young individuals of prey or simultaneous removal of young and adult individuals leads to expansion of parameter space domain with stable dynamics of prey population both with and without a predator. At the same time, the bistability domain narrows, in which changing initial conditions leads to the predator either remains in the community or dies from lack of food. In the case of the harvest for prey adult individuals or predator, the predator preservation in the community is ensured by high values of the prey birth rate, moreover bistability domain expands. With the removal of both juvenile preys and predators, an increase in the survival rates of adult prey leads to stabilization of the community dynamics. The juveniles’ harvest can lead to damping of oscillations and stabilize the prey dynamics in the predator absence. Moreover, it can change the scenario of the coexistence of species — from habitation of preys without predators to a sustainable coexistence of both species. The harvest of some part of predator or prey or the prey’s older age class can lead to both oscillations damping and stable dynamics of the interacting species, and to the destruction of the community, that is, to the death of predator.

  7. Рассматривается модель, описывающая пространственно-временную динамику сообщества, состоящего из трех популяций, представляющих звенья трофической цепи. Локальные взаимодействия популяций строятся по типу «хищник – жертва», причем хищник потребляет не только жертву, но и ресурс, составляющий рацион жертвы. В предыдущей работе автором был проведен анализ модели без учета пространственной неоднородности. Данное исследование продолжает модельное изучение сообщества, учитывая диффузию особей, а также направленные перемещения хищника. Предполагается, что хищник реагирует на пространственное изменение ресурса и жертвы, занимая области с более высокой плотностью или избегая их. В модели такое поведение описывается адвективным членом со скоростью, пропорциональной градиенту плотности ресурса и жертвы. Система рассматривается в одномерной области в предположении нулевых потоков через границу. Динамика модели определяется устойчивостью системы в окрестности пространственно-однородного равновесия к малым пространственно-неоднородным возмущениям. В работе проведен анализ возможности возникновения в системе волновой неустойчивости, приводящей к возникновению автоволн и неустойчивости Тьюринга, в результате которой образуются стационарные структуры. Получены достаточные условия существования обоих видов неустойчивости, определяющие границы области значений коэффициентов таксиса, при которых система может потерять устойчивость. Анализ влияния параметров локальной кинетики модели на возможность образования пространственных структур показал, что при положительном таксисе на ресурс возможна лишь неустойчивость Тьюринга, а при отрицательном — оба вида неустойчивости. Для поиска численного решения системы использован метод линий с расщеплением разностного оператора по физическим процессам. Пространственно-временная динамика системы представлена в нескольких вариантах, реализующих один из типов неустойчивости. В случае положительного таксиса на жертву в областях меньшего размера возможно как реализация автоволнового режима, так и образование стационарных структур; с увеличением области тьюринговы структуры не образуются. Если же таксис на жертву отрицательный, то стационарные структуры возникают в областях любого размера, периодические структуры появляются только в более крупных областях.

    Giricheva E.E.
    Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634

    The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.

  8. Шиняева Т.С.
    Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499

    Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.

    Shinyaeva T.S.
    Activity dynamics in virtual networks: an epidemic model vs an excitable medium model
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1485-1499

    Epidemic models are widely used to mimic social activity, such as spreading of rumors or panic. Simultaneously, models of excitable media are traditionally used to simulate the propagation of activity. Spreading of activity in the virtual community was simulated within two models: the SIRS epidemic model and the Wiener – Rosenblut model of the excitable media. We used network versions of these models. The network was assumed to be heterogeneous, namely, each element of the network has an individual set of characteristics, which corresponds to different psychological types of community members. The structure of a virtual network relies on an appropriate scale-free network. Modeling was carried out on scale-free networks with various values of the average degree of vertices. Additionally, a special case was considered, namely, a complete graph corresponding to a close professional group, when each member of the group interacts with each. Participants in a virtual community can be in one of three states: 1) potential readiness to accept certain information; 2) active interest to this information; 3) complete indifference to this information. These states correspond to the conditions that are usually used in epidemic models: 1) susceptible to infection, 2) infected, 3) refractory (immune or death due to disease). A comparison of the two models showed their similarity both at the level of main assumptions and at the level of possible modes. Distribution of activity over the network is similar to the spread of infectious diseases. It is shown that activity in virtual networks may experience fluctuations or decay.

  9. Дроботенко М.И., Невечеря А.П.
    Прогнозирование динамики трудовых ресурсов на многоотраслевом рынке труда
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 235-250

    Рассмотрена задача прогнозирования количества занятых и безработных многоотраслевого рынка труда на основе балансовой математической модели межотраслевых перемещений трудовых ресурсов.

    Балансовая математическая модель позволяет вычислять значения показателей межотраслевых перемещений с помощью только статистических данных по отраслевой занятости и безработице, предоставляемых Федеральной службой государственной статистики. Вычисленные за несколько лет подряд показатели межотраслевых перемещений трудовых ресурсов используются для построения трендов каждого из этих показателей. С помощью найденных трендов осуществляется прогнозирование показателей межотраслевых перемещений трудовых ресурсов, на основе результатов которого проводится прогнозирование отраслевой занятости и безработицы исследуемого многоотраслевого рынка труда.

    Предложенный подход применен для прогнозирования занятых специалистов в отраслях народного хозяйства Российской Федерации в 2011–2016 гг. Для описания тенденций показателей, определяющих межотраслевые перемещения трудовых ресурсов, использовались следующие виды трендов: линейный, нелинейный, константный. Порядок выбора трендов наглядно продемонстрирован на примере показателей, определяющих перемещения трудовых ресурсов из отрасли «Транспорт и связь» в отрасль «Здравоохранение и предоставление социальных услуг», а также из отрасли «Государственное управление и обеспечение военной безопасности, социальное обеспечение» в отрасль «Образование».

    Произведено сравнение нескольких подходов к прогнозированию: наивный прогноз, в рамках которого прогнозирование показателей рынка труда осуществлялось только на основе константного тренда; прогнозирование на основе балансовой модели с использованием только константного тренда для всех показателей, определяющих межотраслевые перемещения трудовых ресурсов; прогноз непосредственно по количеству занятых в отраслях экономики с помощью рассматриваемых в работе видов трендов; прогнозирование на основе балансовой модели с выбором тренда для каждого показателя, определяющего межотраслевые перемещения трудовых ресурсов. Показано, что использование балансовой модели обеспечивает лучшее качество прогноза по сравнению с прогнозированиемне посредственно по количеству занятых. Учет трендов показателей межотраслевых перемещений улучшает качество прогноза.

    Также в статье приведены примеры анализа состояния многоотраслевого рынка труда Российской Федерации. С помощью балансовой модели были получены такие сведения, как распределение исходящих из конкретных отраслей потоков трудовых ресурсов по отраслямэк ономики, отраслевая структура входящих в конкретные отрасли потоков трудовых ресурсов. Эти сведения не содержаться непосредственно в данных, предоставляемых Федеральной службой государственной статистики.

    Drobotenko M.I., Nevecherya A.P.
    Forecasting the labor force dynamics in a multisectoral labor market
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 235-250

    The article considers the problem of forecasting the number of employed and unemployed persons in a multisectoral labor market using a balance mathematical model of labor force intersectoral dynamics.

    The balance mathematical model makes it possible to calculate the values of intersectoral dynamics indicators using only statistical data on sectoral employment and unemployment provided by the Federal State Statistics Service. Intersectoral dynamics indicators of labor force calculated for several years in a row are used to build trends for each of these indicators. The found trends are used to calculation of forecasted intersectoral dynamics indicators of labor force. The sectoral employment and unemployment of researched multisectoral labor market is forecasted based on values these forecasted indicators.

    The proposed approach was applied to forecast the employed persons in the economic sectors of the Russian Federation in 2011–2016. The following types of trends were used to describe changes of intersectoral dynamics indicators values: linear, non-linear, constant. The procedure for selecting trends is clearly demonstrated by the example of indicators that determine the labor force movements from the “Transport and communications” sector to the “Healthcare and social services” sector, as well as from the “Public administration and military security, social security” sector to the “Education” sector.

    Several approaches to forecasting was compared: a) naive forecast, within which the labor market indicators was forecasted only using a constant trend; b) forecasting based on a balance model using only a constant trend for all intersectoral dynamics indicators of labor force; c) forecasting directly by the number employed persons in economic sectors using the types of trends considered in the article; d) forecasting based on a balance model with the trends choice for each intersectoral dynamics indicators of labor force.

    The article shows that the use of a balance model provides a better forecast quality compared to forecasting directly by the number of employed persons. The use of trends in intersectoral dynamics indicators improves the quality of the forecast. The article also provides analysis examples of the multisectoral labor market in the Russian Federation. Using the balance model, the following information was obtained: the labor force flows distribution outgoing from concrete sectors by sectors of the economy; the sectoral structure of the labor force flows ingoing in concrete sectors. This information is not directly contained in the data provided by the Federal State Statistics Service.

  10. Жданова О.Л., Неверова Г.П., Фрисман Е.Я.
    Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554

    Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.

    Zhdanova O.L., Neverova G.P., Frisman E.Y.
    Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554

    We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.

    The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.