Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'collection efficiency':
Найдено статей: 5
  1. Белеан Б., Белеан К., Флоаре К., Вароди К., Бот А., Адам Г.
    Сеточные высокопроизводительные вычисления в получении спутниковых изображний на примере фильтра Перона–Малик
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 399-406

    В данной работе рассматривается подход к эффективной обработке спутниковых изображений, который включает в себя два этапа. Первый этап заключается в распределении быстро взрастающего объема спутниковых данных, полученных через Грид-инфраструктуру. Второй этап включает в себя ускорение решения отдельных задач, относящихся к обработке изображений с помощью внедрения кодов, которые способствуют интенсивному использованию пространственно-временного параллелизма. Примером такого кода является обработка изображений с помощью итерационного фильтра Перона–Малик в рамках специального применения архитектуры аппаратного обеспечения ППВМ (FPGA).

    Belean B., Belean C., Floare C., Varodi C., Bot A., Adam G.
    Grid based high performance computing in satellite imagery. Case study — Perona–Malik filter
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 399-406

    The present paper discusses an approach to the efficient satellite image processing which involves two steps. The first step assumes the distribution of the steadily increasing volume of satellite collected data through a Grid infrastructure. The second step assumes the acceleration of the solution of the individual tasks related to image processing by implementing execution codes which make heavy use of spatial and temporal parallelism. An instance of such execution code is the image processing by means of the iterative Perona–Malik filter within FPGA application specific hardware architecture.

    Просмотров за год: 3.
  2. Веренцов С.И., Магеррамов Э.А., Виноградов В.А., Гизатуллин Р.И., Алексеенко А.Е., Холодов Я.А.
    Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303

    Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.

    Verentsov S.I., Magerramov E.A., Vinogradov V.A., Gizatullin R.I., Alekseenko A.E., Kholodov Y.A.
    Bayesian localization for autonomous vehicle using sensor fusion and traffic signs
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 295-303

    The localization of a vehicle is an important task in the field of intelligent transportation systems. It is well known that sensor fusion helps to create more robust and accurate systems for autonomous vehicles. Standard approaches, like extended Kalman Filter or Particle Filter, are inefficient in case of highly non-linear data or have high computational cost, which complicates using them in embedded systems. Significant increase of precision, especially in case when GPS (Global Positioning System) is unavailable, may be achieved by using landmarks with known location — such as traffic signs, traffic lights, or SLAM (Simultaneous Localization and Mapping) features. However, this approach may be inapplicable if a priori locations are unknown or not accurate enough. We suggest a new approach for refining coordinates of a vehicle by using landmarks, such as traffic signs. Core part of the suggested system is the Bayesian framework, which refines vehicle location using external data about the previous traffic signs detections, collected with crowdsourcing. This paper presents an approach that combines trajectories built using global coordinates from GPS and relative coordinates from Inertial Measurement Unit (IMU) to produce a vehicle's trajectory in an unknown environment. In addition, we collected a new dataset, including from smartphone GPS and IMU sensors, video feed from windshield camera, which were recorded during 4 car rides on the same route. Also, we collected precise location data from Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) device, which can be used for validation. This RTK-GNSS system was used to collect precise data about the traffic signs locations on the route as well. The results show that the Bayesian approach helps with the trajectory correction and gives better estimations with the increase of the amount of the prior information. The suggested method is efficient and requires, apart from the GPS/IMU measurements, only information about the vehicle locations during previous traffic signs detections.

    Просмотров за год: 22.
  3. Эффективность производственного процесса непосредственно зависит от качества управления технологией, которая, в свою очередь, опирается на точность и оперативность обработки контрольно- измерительной информации. Разработка математических методов исследования системных связей и закономерностей функционирования и построение математических моделей с учетом структурных особенностей объекта исследований, а также написание программных продуктов для реализации данных методов являются актуальными задачами. Практика показала, что список параметров, имеющих место при исследовании сложного объекта современного производства, варьируется от нескольких десятков до нескольких сот наименований, причем степень воздействия каждого из факторов в начальный момент не ясна. Приступать к работе по непосредственному определению модели в этих условиях нельзя — объем требуемой информации может оказаться слишком велик, причем бóльшая часть работы по сбору этой информации будет проделана впустую из-за того, что степень влияния на параметры оптимизации большинства факторов из первоначального списка окажется пренебрежимо малой. Поэтому необходимым этапом при определении модели сложного объекта является работа по сокращению размерности факторного пространства. Большинство промышленных производств являются групповыми иерархическими процессами массового и крупносерийного производства, характеризующимися сотнями факторов. (Для примера реализации математических методов и апробации построенных моделей в основу были взяты данные Молдавского металлургического завода.) С целью исследования системных связей и закономерностей функционирования таких сложных объектов обычно выбираются несколько информативных параметров и осуществляется их выборочный контроль. В данной статье описывается последовательность приведения исходных показателей технологического процесса выплавки стали к виду, пригодному для построения математической модели с целью прогнозирования, внедрения новых видов стали и создание основы для разработки системы автоматизированного управления качеством продукции. В процессе преобразования выделяются следующие этапы: сбор и анализ исходных данных, построение таблицы слабокоррелированных параметров, сокращение факторного пространства с помощью корреляционных плеяд и метода весовых коэффициентов. Полученные результаты позволяют оптимизировать процесс построения модели многофакторного процесса.

    Efficiency of production directly depends on quality of the management of technology which, in turn, relies on the accuracy and efficiency of the processing of control and measuring information. Development of the mathematical methods of research of the system communications and regularities of functioning and creation of the mathematical models taking into account structural features of object of researches, and also writing of the software products for realization of these methods are an actual task. Practice has shown that the list of parameters that take place in the study of complex object of modern production, ranging from a few dozen to several hundred names, and the degree of influence of each factor in the initial time is not clear. Before working for the direct determination of the model in these circumstances, it is impossible — the amount of the required information may be too great, and most of the work on the collection of this information will be done in vain due to the fact that the degree of influence on the optimization of most factors of the original list would be negligible. Therefore, a necessary step in determining a model of a complex object is to work to reduce the dimension of the factor space. Most industrial plants are hierarchical group processes and mass volume production, characterized by hundreds of factors. (For an example of realization of the mathematical methods and the approbation of the constructed models data of the Moldavian steel works were taken in a basis.) To investigate the systemic linkages and patterns of functioning of such complex objects are usually chosen several informative parameters, and carried out their sampling. In this article the sequence of coercion of the initial indices of the technological process of the smelting of steel to the look suitable for creation of a mathematical model for the purpose of prediction is described. The implementations of new types became also creation of a basis for development of the system of automated management of quality of the production. In the course of weak correlation the following stages are selected: collection and the analysis of the basic data, creation of the table the correlated of the parameters, abbreviation of factor space by means of the correlative pleiads and a method of weight factors. The received results allow to optimize process of creation of the model of multiple-factor process.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  4. Сорокин К.Э., Бывальцев П.М., Аксенов А.А., Жлуктов С.В., Савицкий Д.В., Бабулин А.А., Шевяков В.И.
    Численное моделирование обледенения в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 83-96

    Процедура сертификации самолетов транспортной категории для полетов в условиях обледенения требует проведения расчетов форм и размеров ледяных наростов, образующихся на поверхностях самолетов в различные моменты времени. В настоящее время отсутствует программный продукт российской разработки, предназначенный для численного моделирования обледенения, признанный российскими сертификационными органами. В данной работе описывается методика расчета обледенения самолетов IceVision, созданная на базе программного комплекса FlowVision.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume Of Fluid (VOF — объем жидкости в ячейке) для отслеживания нарастания льда. В этой методике решается нестационарная задача непрерывного нарастания льда в эйлеровой постановке. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В других (известных из литературы) подходах изменение формы льда учитывается путем модификации аэродинамической поверхности с использованием лагранжевой сетки, а для учета теплоотдачи в лед используется некоторая эмпирическая модель.

    Реализованная во FlowVision математическая модель предполагает возможность моделирования сухого и влажного режимов обледенения. Модель автоматически определяет зоны сухого и влажного льда. В сухой зоне температура контактной поверхности определяется с учетом сублимации льда и теплопереноса во льду. Во влажной зоне учитывается течение водяной пленки по поверхности льда. Пленка замерзает за счет испарения, теплоотдачи в лед и в воздух. Методика IceVision учитывает отрыв пленки. Для моделирования двухфазного течения воздуха и капель используется многоскоростная модель взаимопроникающих континуумов в рамках эйлерова подхода. Методика IceVision учитывает распределение капель по размерам. Численный алгоритм учитывает существенное различие временных масштабов физических процессов, сопровождающих обледенение самолета: двухфазного внешнего течения (воздуха и капель), течения водяной пленки, роста льда. В работе приводятся результаты решения тестовых задач, демонстрирующие эффективность методики IceVision и достоверность результатов FlowVision.

    Sorokin K.E., Byvaltsev P.M., Aksenov A.A., Zhluktov S.V., Savitskiy D.V., Babulin A.A., Shevyakov V.I.
    Numerical simulation of ice accretion in FlowVision software
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 83-96

    Certifying a transport airplane for the flights under icing conditions requires calculations aimed at definition of the dimensions and shapes of the ice bodies formed on the airplane surfaces. Up to date, software developed in Russia for simulation of ice accretion, which would be authorized by Russian certifying supervisory authority, is absent. This paper describes methodology IceVision recently developed in Russia on the basis of software FlowVision for calculations of ice accretion on airplane surfaces.

    The main difference of methodology IceVision from the other approaches, known from literature, consists in using technology Volume Of Fluid (VOF — volume of fluid in cell) for tracking the surface of growing ice body. The methodology assumes solving a time-depended problem of continuous grows of ice body in the Euler formulation. The ice is explicitly present in the computational domain. The energy equation is integrated inside the ice body. In the other approaches, changing the ice shape is taken into account by means of modifying the aerodynamic surface and using Lagrangian mesh. In doing so, the heat transfer into ice is allowed for by an empirical model.

    The implemented mathematical model provides capability to simulate formation of rime (dry) and glaze (wet) ice. It automatically identifies zones of rime and glaze ice. In a rime (dry) ice zone, the temperature of the contact surface between air and ice is calculated with account of ice sublimation and heat conduction inside the ice. In a glaze (wet) ice zone, the flow of the water film over the ice surface is allowed for. The film freezes due to evaporation and heat transfer inside the air and the ice. Methodology IceVision allows for separation of the film. For simulation of the two-phase flow of the air and droplets, a multi-speed model is used within the Euler approach. Methodology IceVision allows for size distribution of droplets. The computational algorithm takes account of essentially different time scales for the physical processes proceeding in the course of ice accretion, viz., air-droplets flow, water flow, and ice growth. Numerical solutions of validation test problems demonstrate efficiency of methodology IceVision and reliability of FlowVision results.

  5. Winn A.P., Чжо Т., Трояновский В.М., Аунг Я.Л.
    Методика и программа для накопления и статистического анализа результатов компьютерного эксперимента
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 589-595

    Решается задача накопления и статистического анализа результатов компьютерного эксперимента. Программа основного эксперимента рассматривается в рамках разработанной методики как источник данных, собираемых на специально подготовленный лист Excel с заранее организованной структурой для накопления, статистической обработки и визуализации данных. Созданная методика и программа использованы при исследовании эффективности корреляционных методов выделения гармонического сигнала на фоне помех по реализации ограниченной длины.

    Winn A.P., Kyaw H., Troyanovskyi V.M., Aung Y.L.
    Methodology and program for the storage and statistical analysis of the results of computer experiment
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 589-595

    The problem of accumulation and the statistical analysis of computer experiment results are solved. The main experiment program is considered as the data source. The results of main experiment are collected on specially prepared sheet Excel with pre-organized structure for the accumulation, statistical processing and visualization of the data. The created method and the program are used at efficiency research of the scientific researches which are carried out by authors.

    Просмотров за год: 1. Цитирований: 5 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.