Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'boundary value problems':
Найдено статей: 55
  1. При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.

    В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.

    Zimina S.V., Petrov M.N.
    Application of Random Forest to construct a local operator for flow fields refinement in external aerodynamics problems
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 761-778

    Numerical modeling of turbulent flows requires finding the balance between accuracy and computational efficiency. For example, DNS and LES models allow to obtain more accurate results, comparing to RANS models, but are more computationally expensive. Because of this, modern applied simulations are mostly performed with RANS models. But even RANS models can be computationally expensive for complex geometries or series simulations due to the necessity of resolving the boundary layer. Some methods, such as wall functions and near-wall domain decomposition, allow to significantly improve the speed of RANS simulations. However, they inevitably lose precision due to using a simplified model in the near-wall domain. To obtain a model that is both accurate and computationally efficient, it is possible to construct a surrogate model based on previously made simulations using the precise model.

    In this paper, an operator is constructed that allows reconstruction of the flow field obtained by an accurate model based on the flow field obtained by the simplified model. Spalart–Allmaras model with approximate nearwall domain decomposition and Spalart–Allmaras model resolving the near-wall region are taken as the simplified and the base models respectively. The operator is constructed using a local approach, i. e. to reconstruct a point in the flow field, only features (flow variables and their derivatives) at this point in the field are used. The operator is constructed using the Random Forest algorithm. The efficiency and accuracy of the obtained surrogate model are demonstrated on the supersonic flow over a compression corner with different values for angle $\alpha$ and Reynolds number. The investigation has been conducted into interpolation and extrapolation both by $Re$ and $\alpha$.

  2. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

    The article deals with the nonlinear boundary-value problem of hydrogen permeability corresponding to the following experiment. A membrane made of the target structural material heated to a sufficiently high temperature serves as the partition in the vacuum chamber. Degassing is performed in advance. A constant pressure of gaseous (molecular) hydrogen is built up at the inlet side. The penetrating flux is determined by mass-spectrometry in the vacuum maintained at the outlet side.

    A linear model of dependence on concentration is adopted for the coefficient of dissolved atomic hydrogen diffusion in the bulk. The temperature dependence conforms to the Arrhenius law. The surface processes of dissolution and sorptiondesorption are taken into account in the form of nonlinear dynamic boundary conditions (differential equations for the dynamics of surface concentrations of atomic hydrogen). The characteristic mathematical feature of the boundary-value problem is that concentration time derivatives are included both in the diffusion equation and in the boundary conditions with quadratic nonlinearity. In terms of the general theory of functional differential equations, this leads to the so-called neutral type equations and requires a more complex mathematical apparatus. An iterative computational algorithm of second-(higher- )order accuracy is suggested for solving the corresponding nonlinear boundary-value problem based on explicit-implicit difference schemes. To avoid solving the nonlinear system of equations at every time step, we apply the explicit component of difference scheme to slower sub-processes.

    The results of numerical modeling are presented to confirm the fitness of the model to experimental data. The degrees of impact of variations in hydrogen permeability parameters (“derivatives”) on the penetrating flux and the concentration distribution of H atoms through the sample thickness are determined. This knowledge is important, in particular, when designing protective structures against hydrogen embrittlement or membrane technologies for producing high-purity hydrogen. The computational algorithm enables using the model in the analysis of extreme regimes for structural materials (pressure drops, high temperatures, unsteady heating), identifying the limiting factors under specific operating conditions, and saving on costly experiments (especially in deuterium-tritium investigations).

  3. Маничева С.В., Чернов И.А.
    Математическая модель гидридного фазового перехода в частице порошка симметричной формы
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584

    В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.

    Manicheva S.V., Chernov I.A.
    Mathematical model of hydride phase change in a symmetrical powder particle
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 569-584

    In the paper we construct the model of phase change. Process of hydriding / dehydriding is taken as an example. A single powder particle is considered under the assumption about its symmetry. A ball, a cylinder, and a flat plate are examples of such symmetrical shapes. The model desribes both the "shrinking core"(when the skin of the new phase appears on the surface of the particle) and the "nucleation and growth"(when the skin does not appear till complete vanishing of the old phase) scenarios. The model is the non-classical boundary-value problem with the free boundary and nonlinear Neumann boundary condition. The symmetry assumptions allow to reduce the problem to the single spatial variable. The model was tested on the series of experimental data. We show that the particle shape’s influence on the kinetics is insignificant. We also show that a set of particles of different shapes with size distribution can be approxomated by the single particle of the "average" size and of a simple shape; this justifies using single particle approximation and simple shapes in mathematical models.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  4. Заика Ю.В., Родченкова Н.И., Сидоров Н.И.
    Моделирование водородопроницаемости сплавов для мембранного газоразделения
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 121-135

    Производство высокочистого водорода необходимо для экологически чистой энергетики и различных химико-технологических процессов. Значительная часть водорода будет производиться за счет конверсии метана. Методом измерения удельной водородопроницаемости исследуются различные сплавы, перспективные для использования в газоразделительных установках. Требуется оценить параметры диффузии и сорбции, чтобы иметь возможность численно моделировать различные сценарии и условия эксплуатации материала (включая экстремальные), выделять лимитирующие факторы. В статье представлены нелинейная модель водородопроницаемости в соответствии со спецификой эксперимента, численный метод решения краевой задачи и результаты параметрической идентификации модели для сплава V85Ni15.

    Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Просмотров за год: 1. Цитирований: 7 (РИНЦ).
  5. Проведен сравнительный анализ двух моделей пористой среды (Дарси и Бринкмана) на примере математического моделирования нестационарных режимов термогравитационной конвекции в пористой вертикальной цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного охлаждения со стороны окружающей среды. Краевая задача математической физики, сформулированная в безразмерных переменных «функция тока — завихренность — температура», реализована численно неявным методом конечных разностей. Представлены результаты тестовых расчетов и влияния сеточных параметров, отражающие правомерность применения предлагаемого численного подхода. Установлены особенности класса сопряженных задач при использовании рассматриваемых моделей пористой среды.

    Trifonova T.A., Sheremet M.A.
    Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 623-634

    Comparative analysis of two models of porous medium (Dacry and Brinkman) on an example of mathematical simulation of transient natural convection in a porous vertical cylindrical cavity with heat-conducting shell of finite thickness in conditions of convective cooling from an environment has been carried out. The boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function, vorticity and temperature has been solved by implicit finite difference method. The presented verification results validate used numerical approach and also confirm that the solution is not dependent on the mesh size. Features of the conjugate heat transfer problems with considered models of porous medium have been determined.

    Просмотров за год: 1. Цитирований: 4 (РИНЦ).
  6. Найштут Ю.С.
    О границе упругопластических тел минимального объема
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515

    В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.

    Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.

    Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.

    Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.

    Nayshtut Yu.S.
    On the boundaries of optimally designed elastoplastic structures
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 503-515

    This paper studies minimum volume elastoplastic bodies. One part of the boundary of every reviewed body is fixed to the same space points while stresses are set for the remaining part of the boundary surface (loaded surface). The shape of the loaded surface can change in space but the limit load factor calculated based on the assumption that the bodies are filled with elastoplastic medium must not be less than a fixed value. Besides, all varying bodies are supposed to have some type of a limited volume sample manifold inside of them.

    The following problem has been set: what is the maximum number of cavities (or holes in a two-dimensional case) that a minimum volume body (plate) can have under the above limitations? It is established that in order to define a mathematically correct problem, two extra conditions have to be met: the areas of the holes must be bigger than the small constant while the total length of the internal hole contour lines within the optimum figure must be minimum among the varying bodies. Thus, unlike most articles on optimum design of elastoplastic structures where parametric analysis of acceptable solutions is done with the set topology, this paper looks for the topological parameter of the design connectivity.

    The paper covers the case when the load limit factor for the sample manifold is quite large while the areas of acceptable holes in the varying plates are bigger than the small constant. The arguments are brought forward that prove the Maxwell and Michell beam system to be the optimum figure under these conditions. As an example, microphotographs of the standard biological bone tissues are presented. It is demonstrated that internal holes with large areas cannot be a part of the Michell system. At the same the Maxwell beam system can include holes with significant areas. The sufficient conditions are given for the hole formation within the solid plate of optimum volume. The results permit generalization for three-dimensional elastoplastic structures.

    The paper concludes with the setting of mathematical problems arising from the new problem optimally designed elastoplastic systems.

    Просмотров за год: 8.
  7. Чернов И.А.
    Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183

    Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.

    Chernov I.A.
    High-throughput identification of hydride phase-change kinetics models
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183

    Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.

  8. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

    Govorukhin V.N., Zagrebneva A.D.
    Population waves and their bifurcations in a model “active predator – passive prey”
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843

    Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.

    The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.

    It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.

  9. Волохова А.В., Земляная Е.В., Качалов В.В., Рихвицкий В.С.
    Моделирование процесса истощения газоконденсатного пласта
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095

    Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.

    В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.

    Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.

    Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 С) и карбонатного (при 60 С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.

    Volokhova A.V., Zemlyanay E.V., Kachalov V.V., Rikhvitskiy V.S.
    Simulation of the gas condensate reservoir depletion
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095

    One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.

    In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.

    The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.

    Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.

  10. Кудров А.И., Шеремет М.А.
    Численный анализ естественной конвекции кориума в условиях внутрикорпусной локализации с учетом переменного тепловыделения
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 807-822

    В представленном исследовании проводится численное моделирование охлаждения кориума, расплава керамического топлива ядерного реактора и оксидов конструкционных материалов, в горизонтальной полуцилиндрической полости, стенки которой поддерживаются при постоянной температуре, в условиях естественной конвекции.

    Охлаждение кориума — это процесс характерный для тяжелой аварии на ядерном реакторе, которая может быть локализована путем удержания кориума внутри корпуса реактора, испытывающего внешнее охлаждение. Такой подход обеспечивает не только сравнительно простой способ удержания радиоактивности в пределах первого контура, но и возможность реализации на действующих блоках. Это выступает альтернативой ловушке расплава, еще одному методу локализации. Точный анализ и моделирование процесса охлаждения в таких условиях оказываются перспективной областью исследований в настоящее время.

    В начальный момент времени температура кориума принимается равной температуре стенки. Кориум, несмотря на останов реактора, обладает остаточным тепловыделением, которое уменьшается со временем согласно формуле Вэя–Вигнера. Процесс естественной конвекции внутри полости описывается системой уравнений в приближении Буссинеска, которая включает в себя уравнение движения, уравнение неразрывности и уравнение энергии. Конвективные потоки считаются ламинарными и двумерными, теплофизические свойства жидкости считаются независимыми от температуры.

    Краевая задача математической физики формулируется в безразмерных переменных «функция тока – завихренность». Полученные дифференциальные уравнения решаются численно при помощи метода конечных разностей c использованием локально-одномерной схемы Самарского применительно к уравнениям параболического типа.

    В результате исследований получены временные зависимости среднего числа Нуссельта на верхней и нижней стенках полости в широком диапазоне изменения числа Рэлея от 103 до 106. Указанные зависимости также были проанализированы при различных значениях безразмерного времени работы реактора до аварии. Исследования проведены как на основе распределений изолиний функции тока и температуры, так и с использованием временных профилей интенсивности конвективного течения и теплообмена.

    Kudrov A.I., Sheremet M.A.
    Numerical simulation of corium cooling driven by natural convection in case of in-vessel retention and time-dependent heat generation
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 807-822

    Represented study considers numerical simulation of corium cooling driven by natural convection within a horizontal hemicylindrical cavity, boundaries of which are assumed isothermal. Corium is a melt of ceramic fuel of a nuclear reactor and oxides of construction materials.

    Corium cooling is a process occurring during severe accident associated with core melt. According to invessel retention conception, the accident may be restrained and localized, if the corium is contained within the vessel, only if it is cooled externally. This conception has a clear advantage over the melt trap, it can be implemented at already operating nuclear power plants. Thereby proper numerical analysis of the corium cooling has become such a relevant area of studies.

    In the research, we assume the corium is contained within a horizontal semitube. The corium initially has temperature of the walls. In spite of reactor shutdown, the corium still generates heat owing to radioactive decays, and the amount of heat released decreases with time accordingly to Way–Wigner formula. The system of equations in Boussinesq approximation including momentum equation, continuity equation and energy equation, describes the natural convection within the cavity. Convective flows are taken to be laminar and two-dimensional.

    The boundary-value problem of mathematical physics is formulated using the non-dimensional nonprimitive variables «stream function – vorticity». The obtained differential equations are solved numerically using the finite difference method and locally one-dimensional Samarskii scheme for the equations of parabolic type.

    As a result of the present research, we have obtained the time behavior of mean Nusselt number at top and bottom walls for Rayleigh number ranged from 103 to 106. These mentioned dependences have been analyzed for various dimensionless operation periods before the accident. Investigations have been performed using streamlines and isotherms as well as time dependences for convective flow and heat transfer rates.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.