Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
class="publication_info"> class="authors3">Бергер А.И., class="authors3">Гуда С.А.
Свойства алгоритмов поиска оптимальных порогов для задач многозначной классификации
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1221-1238class="abstract">Модели многозначной классификации возникают в различных сферах современной жизни, что объясняется всё большим количеством информации, требующей оперативного анализа. Одним из математических методов решения этой задачи является модульный метод, на первом этапе которого для каждого класса строится некоторая ранжирующая функция, упорядочивающая некоторым образом все объекты, а на втором этапе для каждого класса выбирается оптимальное значение порога, объекты с одной стороны которого относят к текущему классу, а с другой — нет. Пороги подбираются так, чтобы максимизировать целевую метрику качества. Алгоритмы, свойства которых изучаются в настоящей статье, посвящены второму этапу модульного подхода — выбору оптимального вектора порогов. Этот этап становится нетривиальным в случае использования в качестве целевой метрики качества $F$-меры от средней точности и полноты, так как она не допускает независимую оптимизацию порога в каждом классе. В задачах экстремальной многозначной классификации число классов может достигать сотен тысяч, поэтому исходная оптимизационная задача сводится к задаче поиска неподвижной точки специальным образом введенного отображения $\boldsymbol V$, определенного на единичном квадрате на плоскости средней точности $P$ и полноты $R$. Используя это отображение, для оптимизации предлагаются два алгоритма: метод линеаризации $F$-меры и метод анализа области определения отображения $\boldsymbol V$. На наборах данных многозначной классификации разного размера и природы исследуются свойства алгоритмов, в частности зависимость погрешности от числа классов, от параметра $F$-меры и от внутренних параметров методов. Обнаружена особенность работы обоих алгоритмов для задач с областью определения отображения $\boldsymbol V$, содержащей протяженные линейные участки границ. В случае когда оптимальная точка расположена в окрестности этих участков, погрешности обоих методов не уменьшаются с увеличением количества классов. При этом метод линеаризации достаточно точно определяет аргумент оптимальной точки, а метод анализа области определения отображения $\boldsymbol V$ — полярный радиус.
Ключевые слова: многозначная классификация, экстремальная классификация, $F$-мера, метод линеаризации, метод анализа области определения.class="publication_info"> class="authors3">Berger A.I., class="authors3">Guda S.A.
Optimal threshold selection algorithms for multi-label classification: property study
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1221-1238class="abstract">Multi-label classification models arise in various areas of life, which is explained by an increasing amount of information that requires prompt analysis. One of the mathematical methods for solving this problem is a plug-in approach, at the first stage of which, for each class, a certain ranking function is built, ordering all objects in some way, and at the second stage, the optimal thresholds are selected, the objects on one side of which are assigned to the current class, and on the other — to the other. Thresholds are chosen to maximize the target quality measure. The algorithms which properties are investigated in this article are devoted to the second stage of the plug-in approach which is the choice of the optimal threshold vector. This step becomes non-trivial if the $F$-measure of average precision and recall is used as the target quality assessment since it does not allow independent threshold optimization in each class. In problems of extreme multi-label classification, the number of classes can reach hundreds of thousands, so the original optimization problem is reduced to the problem of searching a fixed point of a specially introduced transformation $\boldsymbol V$, defined on a unit square on the plane of average precision $P$ and recall $R$. Using this transformation, two algorithms are proposed for optimization: the $F$-measure linearization method and the method of $\boldsymbol V$ domain analysis. The properties of algorithms are studied when applied to multi-label classification data sets of various sizes and origin, in particular, the dependence of the error on the number of classes, on the $F$-measure parameter, and on the internal parameters of methods under study. The peculiarity of both algorithms work when used for problems with the domain of $\boldsymbol V$, containing large linear boundaries, was found. In case when the optimal point is located in the vicinity of these boundaries, the errors of both methods do not decrease with an increase in the number of classes. In this case, the linearization method quite accurately determines the argument of the optimal point, while the method of $\boldsymbol V$ domain analysis — the polar radius.
-
class="publication_info"> class="authors3">Рисник Д.В., class="authors3">Левич А.П., class="authors3">Фурсова П.В., class="authors3">Гончаров И.А.
Алгоритм метода по расчету границ качественных классов для количественных характеристик систем и по установлению взаимосвязей между характеристиками. Часть 1. Расчеты для двух качественных классов
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 19-36class="abstract">Предложен метод расчета границ качественных классов для количественных характеристик систем любой природы. Метод позволяет установить: связи, не поддающиеся обнаружению при помощи корреляционного и регрессионного анализа; границы для качественных классов индикатора состояния систем и факторов, влияющих на это состояние; вклад факторов в степень «неприемлемости» значений индикатора; достаточность программы наблюдений за
факторами для описания причин «неприемлемости» значений индикатора.Ключевые слова: анализ связи, максимизация силы связи, индикаторы, факторы, границы качественных классов, вклад фактора.class="publication_info"> class="authors3">Risnik D.V., class="authors3">Levich A.P., class="authors3">Fursova P.V., class="authors3">Goncharov I.A.
The algorithm of the method for calculating quality classes’ boundaries for quantitative systems’ characteristics and for determination of interactions between characteristics. Part 1. Calculation for two quality classes
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 19-36class="abstract">Просмотров за год: 1. Цитирований: 6 (РИНЦ).A calculation method for boundaries of quality classes for quantitative systems characteristics of any nature is suggested. The method allows to determine interactions which are not detectable using correlation and regression analysis; quality classes’ boundaries of systems’ condition indicator and boundaries of the factors influencing this condition; contribution of the factors to a degree of «inadmissibility» of indicator values; sufficiency of the program observing the factors to describe the causes of «inadmissibility» of indicator values.
-
class="publication_info"> class="authors3">Рисник Д.В., class="authors3">Левич А.П., class="authors3">Фурсова П.В., class="authors3">Гончаров И.А.
Алгоритм метода по расчету границ качественных классов для количественных характеристик систем и по установлению взаимосвязей между характеристиками. Часть 2. Расчеты для трех и более качественных классов
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 37-54class="abstract">Метод расчета границ качественных классов для количественных характеристик систем любой природы адаптирован к поиску границ при наличии трех качественных классов. Адаптация метода позволила в дополнение к другим результатам определить границы между качественными классами при одновременной «неприемлемости» высоких и низких значений индикаторной характеристики состояния системы и одновременной «недопустимости» высоких и низких значений факторов, влияющих на систему.
Ключевые слова: анализ связи, максимизация силы связи, индикаторы, факторы, границы качественных классов, вклад фактора.class="publication_info"> class="authors3">Risnik D.V., class="authors3">Levich A.P., class="authors3">Fursova P.V., class="authors3">Goncharov I.A.
The algorithm of the method for calculating quality classes’ boundaries for quantitative systems’ characteristics and for determination of interactions between characteristics. Part 2. Calculation for three or more quality classes
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 37-54class="abstract">Просмотров за год: 4. Цитирований: 1 (РИНЦ).The method of calculation of the boundaries of quality classes for quantitative characteristics of systems with any properties is adapted to search for boundaries of three quality classes. In addition to other results, adaptation of the method allowed to determine boundaries between quality classes at simultaneous «unacceptability » of high and low values of indicator characteristic of the system condition and simultaneous «inadmissibility » of high and low values of factors affecting the system.
-
class="publication_info"> class="authors3">Рисник Д.В., class="authors3">Левич А.П., class="authors3">Булгаков Н.Г., class="authors3">Бикбулатов Э.С., class="authors3">Бикбулатова Е.М., class="authors3">Ершов Ю.В., class="authors3">Конюхов И.В., class="authors3">Корнева Л.Г., class="authors3">Лазарева В.И., class="authors3">Литвинов А.С., class="authors3">Максимов В.Н., class="authors3">Мамихин С.В., class="authors3">Осипов В.А., class="authors3">Отюкова Н.Г., class="authors3">Поддубный С.А., class="authors3">Пырина И.Л., class="authors3">Соколова Е.А., class="authors3">Степанова И.Э., class="authors3">Фурсова П.В., class="authors3">Цельмович О.Л.
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 1. Критерии неслучайности связи
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 83-105class="abstract">На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторыми физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы стандартные методы статистического анализа (корреляционный, регрессионный), методы описания связи между качественными классами характеристик, основанные на отклонении исследуемого распределения характеристик от независимого распределения. Предложен метод поиска оптимальных границ качественных классов по критерию максимума коэффициентов связи.
Ключевые слова: флуоресценция, фитопланктон, пигменты, хлорофилл, коэффициент Юлла, коэффициент Пирсона, поиск связи, Рыбинское водохранилище.class="publication_info"> class="authors3">Risnik D.V., class="authors3">Levich A.P., class="authors3">Bulgakov N.G., class="authors3">Bikbulatov E.S., class="authors3">Bikbulatova E.M., class="authors3">Ershov Y.V., class="authors3">Konuhov I.V., class="authors3">Korneva L.G., class="authors3">Lazareva V.I., class="authors3">Litvinov A.S., class="authors3">Maksimov V.N., class="authors3">Mamihin S.V., class="authors3">Osipov V.A., class="authors3">Otyukova N.G., class="authors3">Poddubnii S.A., class="authors3">Pirina I.L., class="authors3">Sokolova E.A., class="authors3">Stepanova I.E., class="authors3">Fursova P.V., class="authors3">Celmovich O.L.
Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 1. Criteria of connection nonrandomness
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 83-105class="abstract">Просмотров за год: 3. Цитирований: 6 (РИНЦ).Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The standard methods of statistical analysis (correlation, regression), methods of description of connection between qualitative classes of characteristics, based on deviation of the studied characteristics distribution from independent distribution, are studied. A method of searching for boundaries of quality classes by criterion of maximum connection coefficient is offered.
-
class="publication_info"> class="authors3">Левич А.П., class="authors3">Булгаков Н.Г., class="authors3">Рисник Д.В., class="authors3">Бикбулатов Э.С., class="authors3">Бикбулатова Е.М., class="authors3">Гончаров И.А., class="authors3">Ершов Ю.В., class="authors3">Конюхов И.В., class="authors3">Корнева Л.Г., class="authors3">Лазарева В.И., class="authors3">Литвинов А.С., class="authors3">Максимов В.Н., class="authors3">Мамихин С.В., class="authors3">Осипов В.А., class="authors3">Отюкова Н.Г., class="authors3">Поддубный С.А., class="authors3">Пырина И.Л., class="authors3">Соколова Е.А., class="authors3">Степанова И.Э., class="authors3">Фурсова П.В., class="authors3">Цельмович О.Л.
Поиск связей между биологическими и физикохимическими характеристиками экосистемы Рыбинского водохранилища. Часть 3. Расчет границ классов качества
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 451-471class="abstract">Апробирован метод расчета границ классов качества вод для целей экологической диагностики и нормирования по данным Рыбинского водохранилища. В целях биоиндикации использованы показатели интенсивности флуоресценции фитопланктона и показатели содержания пигментов фитопланктона. Коэффициент существенности Чеснокова оказался наиболее предпочтительной мерой связи для анализа влияния факторов среды на индикаторы. Выявлены существенные для экологического состояния факторы окружающей среды. Проведено сравнение полученных границ классов качества, разделяющих «допустимые» и «недопустимые» значения факторов с границами из других классификаторов качества вод.
Ключевые слова: биоиндикация, экологическая диагностика, экологическое нормирование, флуоресценция, фитопланктон, пигменты, хлорофилл, границы классов качества, Рыбинское водохранилище.class="publication_info"> class="authors3">Levich A.P., class="authors3">Bulgakov N.G., class="authors3">Risnik D.V., class="authors3">Bikbulatov E.S., class="authors3">Bikbulatova E.M., class="authors3">Goncharov I.A., class="authors3">Ershov Y.V., class="authors3">Konuhov I.V., class="authors3">Korneva L.G., class="authors3">Lazareva V.I., class="authors3">Litvinov A.S., class="authors3">Maksimov V.N., class="authors3">Mamihin S.V., class="authors3">Osipov V.A., class="authors3">Otyukova N.G., class="authors3">Poddubnii S.A., class="authors3">Pirina I.L., class="authors3">Sokolova E.A., class="authors3">Stepanova I.E., class="authors3">Fursova P.V., class="authors3">Celmovich O.L.
Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 3. Calculation of the boundaries of water quality classes
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 451-471class="abstract">Просмотров за год: 4. Цитирований: 4 (РИНЦ).Approbation of calculation of borders of water quality classes for the purpose of ecological diagnosis and standardization by data of the Rybinsk reservoir is carried out. For bioindication indicators of phytoplankton fluorescence and the contents of pigments of phytoplankton are used. Chesnokov's importance coefficient proved to be the most preferred measure of connection for analyzing the effects of environmental factors on indicators. The factors important for environmental condition are identified. Comparison of borders between quality classes “valid” and “invalid” of factors values and boundaries of the classifications of water quality.
-
class="publication_info"> class="authors3">Борисова Л.Р., class="authors3">Кузнецова А.В., class="authors3">Сергеева Н.В., class="authors3">Сенько О.В.
Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215class="abstract">В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.
Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.
Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.
Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.
Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.
Ключевые слова: методы машинного обучения, устойчивое развитие, Арктическая зона РФ, экономические критерии, Полярный индекс компаний.class="publication_info"> class="authors3">Borisova L.R., class="authors3">Kuznetsova A.V., class="authors3">Sergeeva N.V., class="authors3">Sen'ko O.V.
Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215class="abstract">The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"