Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Методы решения парадокса Браесса на транспортной сети с автономным транспортом
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 281-294Дороги — ресурс, который может использоваться как водителями, так и автономными транспортными средствами. Ежегодно количество транспортных средств увеличивается, из-за чего каждое отдельно взятое транспортное средство тратит всё больше времени в пробках, тем самым увеличивая суммарные временные затраты. При планировании новой дороги ключевой задачей становится сокращение времени в пути. Оптимизация транспортных сетей в настоящее время часто происходит с помощью добавления новых связующих дорог между высоконагруженными частями трасс. Парадокс Браесса заключается в том, что построение нового ребра дорожной сети приводит к увеличению времени в пути для каждого транспортного средства в сети. Целью данной статьи является предложение различных разрешений парадокса Браесса при рассмотрении автономных транспортных средств в качестве участников дорожного движения. Один из вариантов топологического решения транспортной задачи — использование искусственных ограничителей трафика. Как пример таких ограничителей статья рассматривает введение выделенных полос, доступных только для определенных видов транспорта. Выделенные полосы занимают особое место в транспортной сети и могут обслуживать поток по-разному. В данной статье рассмотрены наиболее часто встречающиеся случаи распределения трафика на сети из двух дорог, приведены аналитический и численный методы оптимизации модели и представлена модель оптимального распределения трафика, которая рассматривает различные варианты выделения полос на изолированной транспортной сети. В результате проведенных исследований было обнаружено, что введение выделенных полос решает парадокс Браесса и приводит к уменьшению общего времени в пути. Решения приведены как для искусственно смоделированной сети, так и на реальных примерах. В статье представлен алгоритм моделирования трафика на браессовской сети и приведено обоснование его корректности на реальном примере.
Methods for resolving the Braess paradox in the presence of autonomous vehicles
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.
-
Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.
Ключевые слова: байесовское обучение, слияние данных сенсоров, локализация, автономные транспортные средства.
Bayesian localization for autonomous vehicle using sensor fusion and traffic signs
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 295-303Просмотров за год: 22.The localization of a vehicle is an important task in the field of intelligent transportation systems. It is well known that sensor fusion helps to create more robust and accurate systems for autonomous vehicles. Standard approaches, like extended Kalman Filter or Particle Filter, are inefficient in case of highly non-linear data or have high computational cost, which complicates using them in embedded systems. Significant increase of precision, especially in case when GPS (Global Positioning System) is unavailable, may be achieved by using landmarks with known location — such as traffic signs, traffic lights, or SLAM (Simultaneous Localization and Mapping) features. However, this approach may be inapplicable if a priori locations are unknown or not accurate enough. We suggest a new approach for refining coordinates of a vehicle by using landmarks, such as traffic signs. Core part of the suggested system is the Bayesian framework, which refines vehicle location using external data about the previous traffic signs detections, collected with crowdsourcing. This paper presents an approach that combines trajectories built using global coordinates from GPS and relative coordinates from Inertial Measurement Unit (IMU) to produce a vehicle's trajectory in an unknown environment. In addition, we collected a new dataset, including from smartphone GPS and IMU sensors, video feed from windshield camera, which were recorded during 4 car rides on the same route. Also, we collected precise location data from Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) device, which can be used for validation. This RTK-GNSS system was used to collect precise data about the traffic signs locations on the route as well. The results show that the Bayesian approach helps with the trajectory correction and gives better estimations with the increase of the amount of the prior information. The suggested method is efficient and requires, apart from the GPS/IMU measurements, only information about the vehicle locations during previous traffic signs detections.
-
Lidar and camera data fusion in self-driving cars
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1239-1253Sensor fusion is one of the important solutions for the perception problem in self-driving cars, where the main aim is to enhance the perception of the system without losing real-time performance. Therefore, it is a trade-off problem and its often observed that most models that have a high environment perception cannot perform in a real-time manner. Our article is concerned with camera and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its input from Lidar as well as the output from the 2D detector that take its input from the camera, to give better perception output than any of them separately, ensuring that it is able to work in real-time. We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model (Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar and camera information with a fast and efficient late fusion technique that is discussed in detail in this article. We used the mean average precision (mAP) metric in order to evaluate our object detection model and to compare the proposed approach with them as well. At the end, we showed the results on the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset. We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware configurations which proved that our proposed approach could give good results and work efficiently in practical situations in a real-time manner.
Ключевые слова: autonomous vehicles, self-driving cars, sensors fusion, Lidar, camera, late fusion, point cloud, images, KITTI dataset, hardware verification.
Lidar and camera data fusion in self-driving cars
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1239-1253Sensor fusion is one of the important solutions for the perception problem in self-driving cars, where the main aim is to enhance the perception of the system without losing real-time performance. Therefore, it is a trade-off problem and its often observed that most models that have a high environment perception cannot perform in a real-time manner. Our article is concerned with camera and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its input from Lidar as well as the output from the 2D detector that take its input from the camera, to give better perception output than any of them separately, ensuring that it is able to work in real-time. We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model (Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar and camera information with a fast and efficient late fusion technique that is discussed in detail in this article. We used the mean average precision (mAP) metric in order to evaluate our object detection model and to compare the proposed approach with them as well. At the end, we showed the results on the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset. We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware configurations which proved that our proposed approach could give good results and work efficiently in practical situations in a real-time manner.
-
Дискретное моделирование процесса восстановительного ремонта участка дороги
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1255-1268Работа содержит описание результатов моделирования процесса поддержания готовности участка дорожной сети в условиях воздействия с заданными параметрами. Рассматривается одномерный участок дороги длиной до 40 км с общим количеством ударов до 100 в течение рабочей смены бригады.
Разработана имитационная модель проведения работ по его поддержанию в рабочем состоянии несколькими группами (инженерными бригадами), входящими в состав инженерно-дорожного подразделения. Для поиска точек появления заграждений используется беспилотный летательный аппарат мультикоптерного типа.
Разработаны схемы жизненных циклов основных участников тактической сцены и построена событийно управляемая модель тактической сцены. Предложен формат журнала событий, формируемого в результате имитационного моделирования процесса поддержания участка дороги.
Для визуализации процесса поддержания готовности участка дороги предложено использовать визуализацию в формате циклограммы. Разработан стиль для построения циклограммы на основе журнала событий.
В качестве алгоритма принятия решения по назначению заграждений бригадам принят простейший алгоритм, предписывающий выбирать ближайшее заграждение.
Предложен критерий, описывающий эффективность работ по поддержанию участка на основе оценки средней скорости движения транспортов по участку дороги.
Построены графики зависимости значения критерия и среднеквадратичной ошибки в зависимости от длины поддерживаемого участка и получена оценка для максимальной протяженности дорожного участка, поддерживаемого в состоянии готовности с заданными значениями для выбранного показателя качества при заданных характеристика нанесения ударов и производительности ремонтных бригад. Показана целесообразность проведения работ по поддержанию готовности несколькими бригадами, входящими в состав инженерно-дорожного подразделения, действующими автономно.
Проанализировано влияние скорости беспилотного летательного аппарата на возможности по поддержанию готовности участка. Рассмотрен диапазон скоростей от 10 до 70 км/ч, что соответствует техническим возможностям разведывательных беспилотных летательных аппаратов мультикоптерного типа.
Результаты моделирования могут быть использованы в составе комплексной имитационной модели армейской наступательной или оборонительной операции и при решении задачи оптимизации назначения задач по поддержанию готовности участков дорог инженерно-дорожными бригадами. Предложенный подход может представлять интерес при разработке игр-стратегий военной направленности.
Ключевые слова: имитационная модель, управление действиями сил и средств.
Discrete simulation of the road restoration process
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1255-1268This work contains a description of the results of modeling the process of maintaining the readiness of a section of the road network under strikes of with specified parameters. A one-dimensional section of road up to 40 km long with a total number of strikes up to 100 during the work of the brigade is considered. A simulation model has been developed for carrying out work to maintain it in working condition by several groups (engineering teams) that are part of the engineering and road division. A multicopter-type unmanned aerial vehicle is used to search for the points of appearance of obstacles. Life cycle schemes of the main participants of the tactical scene have been developed and an event-driven model of the tactical scene has been built. The format of the event log generated as a result of simulation modeling of the process of maintaining a road section is proposed. To visualize the process of maintaining the readiness of a road section, it is proposed to use visualization in the cyclogram format.
An XSL style has been developed for building a cyclogram based on an event log. As an algorithm for making a decision on the assignment of barriers to brigades, the simplest algorithm has been adopted, prescribing choosing the nearest barrier. A criterion describing the effectiveness of maintenance work on the site based on the assessment of the average speed of vehicles on the road section is proposed. Graphs of the dependence of the criterion value and the root-meansquare error depending on the length of the maintained section are plotted and an estimate is obtained for the maximum length of the road section maintained in a state of readiness with specified values for the selected quality indicator with specified characteristics of striking and performance of repair crews. The expediency of carrying out work to maintain readiness by several brigades that are part of the engineering and road division operating autonomously is shown.
The influence of the speed of the unmanned aerial vehicle on the ability to maintain the readiness of the road section is analyzed. The speed range for from 10 to 70 km/h is considered, which corresponds to the technical capabilities of multicoptertype reconnaissance unmanned aerial vehicles. The simulation results can be used as part of a complex simulation model of an army offensive or defensive operation and for solving the problem of optimizing the assignment of tasks to maintain the readiness of road sections to engineering and road brigades. The proposed approach may be of interest for the development of military-oriented strategy games.
Keywords: simulation, optimal maintenance of the road. -
Надежность автоматизированных систем управления (АСУ) и безопасность автономных автомобилей основываются на предположении, что если система компьютерного зрения, установленная на автомобиле, способна идентифицировать объекты в поле видимости и АСУ способна достоверно оценить намерение и предсказать поведение каждого из этих объектов, то автомобиль может спокойно управляться без водителя. Однако как быть с объектами, которые не видны?
В данной статье мы рассматриваем задачу из двух частей: (1) статической (о потенциальных слепых зонах) и (2) динамической реального времени (об идентификации объектов в слепых зонах и информировании участников дорожного движения о таких объектах). Эта задача рассматривается в контексте городских перекрестков.
Ключевые слова: автономные автомобили, подключенные автомобили, подключенные перекрестки, слепые зоны, I2V, DSRC.Просмотров за год: 29.Intersections present a very demanding environment for all the parties involved. Challenges arise from complex vehicle trajectories; occasional absence of lane markings to guide vehicles; split phases that prevent determining who has the right of way; invisible vehicle approaches; illegal movements; simultaneous interactions among pedestrians, bicycles and vehicles. Unsurprisingly, most demonstrations of AVs are on freeways; but the full potential of automated vehicles — personalized transit, driverless taxis, delivery vehicles — can only be realized when AVs can sense the intersection environment to efficiently and safely maneuver through intersections.
AVs are equipped with an array of on-board sensors to interpret and suitably engage with their surroundings. Advanced algorithms utilize data streams from such sensors to support the movement of autonomous vehicles through a wide range of traffic and climatic conditions. However, there exist situations, in which additional information about the upcoming traffic environment would be beneficial to better inform the vehicles’ in-built tracking and navigation algorithms. A potential source for such information is from in-pavement sensors at an intersection that can be used to differentiate between motorized and non-motorized modes and track road user movements and interactions. This type of information, in addition to signal phasing, can be provided to the AV as it approaches an intersection, and incorporated into an improved prior for the probabilistic algorithms used to classify and track movement in the AV’s field of vision.
This paper is concerned with the situation in which there are objects that are not visible to the AV. The driving context is that of an intersection, and the lack of visibility is due to other vehicles that obstruct the AV’s view, leading to the creation of blind zones. Such obstruction is commonplace in intersections.
Our objective is:
1) inform a vehicle crossing the intersection about its potential blind zones;
2) inform the vehicle about the presence of agents (other vehicles, bicyclists or pedestrians) in those blind zones.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"