Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Программа NINE: численное решение граничных задач для нелинейных дифференциальных уравнений методом НАМН
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 315-324Представлена программа NINE (Newtonian Iteration for Nonlinear Equation) численного решения граничных задач для нелинейных дифференциальных уравнений второго порядка на основе непрерывного аналога метода Ньютона (НАМН) с использованием нумеровской конечно-разностной аппроксимации четвертого порядка относительно шага дискретизации по пространственной переменной. Обсуждаются алгоритмы вычисления ньютоновского итерационного параметра. Выполнены методические расчеты, демонстрирующие влияние выбора итерационного параметра на сходимость итерационного процесса. Представлены результаты проведенного с помощью программы NINE численного исследования положительных частицеподобных решений уравнения скалярного поля.
Ключевые слова: нелинейные дифференциальные уравнения, непрерывный аналог метода Ньютона, конечно-разностная аппроксимация.
NINE: computer code for numerical solution of the boundary problems for nonlinear differential equations on the basis of CANM
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 315-324Просмотров за год: 1. Цитирований: 1 (РИНЦ).The computer code NINE (Newtonian Iteration for Nonlinear Equation) for numerical solution of the boundary problems for nonlinear differential equations on the basis of continuous analogue of the Newton method (CANM) is presented. Numerov’s finite-difference appproximation is applied to provide the fourth accuracy order with respect to the discretization stepsize. Algorithms of calculating the Newtonian iterative parameter are discussed. A convergence of iteration process in dependence on choice of the iteration parameter has been studied. Results of numerical investigation of the particle-like solutions of the scalar field equation are given.
-
Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 945-953В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента.
В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью.
Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диа- граммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала.
Ключевые слова: композиционный материал, нелинейная упругость, чистый изгиб, колебания, гомогенизация.
Estimation of natural frequencies of pure bending vibrations of composite nonlinearly elastic beams and circular plates
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 945-953Просмотров за год: 14.In the paper, it is represented a linearization method for the stress-strain curves of nonlinearly deformable beams and circular plates in order to generalize the pure bending vibration equations. It is considered composite, on average isotropic prismatic beams of a constant rectangular cross-section and circular plates of a constant thickness made of nonlinearly elastic materials. The technique consists in determining the approximate Young’s moduli from the initial stress-strain state of beam and plate subjected to the action of the bending moment.
The paper proposes two criteria for linearization: the equality of the specific potential energy of deformation and the minimization of the standard deviation in the state equation approximation. The method allows obtaining in the closed form the estimated value of the natural frequencies of layered and structurally heterogeneous, on average isotropic nonlinearly elastic beams and circular plates. This makes it possible to significantly reduce the resources in the vibration analysis and modeling of these structural elements. In addition, the paper shows that the proposed linearization criteria allow to estimate the natural frequencies with the same accuracy.
Since in the general case even isotropic materials exhibit different resistance to tension and compression, it is considered the piecewise-linear Prandtl’s diagrams with proportionality limits and tangential Young’s moduli that differ under tension and compression as the stress-strain curves of the composite material components. As parameters of the stress-strain curve, it is considered the effective Voigt’s characteristics (under the hypothesis of strain homogeneity) for a longitudinally layered material structure; the effective Reuss’ characteristics (under the hypothesis of strain homogeneity) for a transversely layered beam and an axially laminated plate. In addition, the effective Young’s moduli and the proportionality limits, obtained by the author’s homogenization method, are given for a structurally heterogeneous, on average isotropic material. As an example, it is calculated the natural frequencies of two-phase beams depending on the component concentrations.
-
О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.
В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.
Ключевые слова: выпуклая оптимизация, стохастическая оптимизация, регуляризация, острый минимум, условие квадратичного роста, метод Монте-Карло.
On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.
In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.
-
Волновые и релаксационные эффекты при истечении газовзвеси, частично заполняющей цилиндрический канал
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1495-1506Работа посвящена изучению волновых и релаксационных эффектов при импульсном истечении смеси газа с большим содержанием твердых частиц из цилиндрического канала при его начальном частичном заполнении. Задача сформулирована в двухскоростной двухтемпературной постановке и решалась численно гибридным методом крупных частиц второго порядка аппроксимации. Численный алгоритм реализован в виде параллельных вычислений с использованием базовых языковых средств Free Pascal. Применимость и точность метода для волновых потоков концентрированных газовзвесей подтверждены сопоставлением с тестовыми асимптотически точными решениями. Погрешность расчета на сетке невысокой детализации вх арактерных зонах течения двухфазной среды составила 10−6 . . . 10−5.
На основе волновой диаграммы выполнен анализ физической картины истечении газовзвеси, частично заполняющей цилиндрический канал. Установлено, что в зависимости от степени начального заполнения канала формируются различные режимы истечения. Первый режим реализуется при небольшой степени загрузки камеры высокого давления, при которой левая граница смеси газа и частиц пересекает выходное сечение до прихода отраженной от дна канала волны разрежения. При этом достигается максимальное значение массового расхода смеси. Другие режимы формируются в случаях большего начального заполнения канала, когда отраженные от дна канала волны разрежения взаимодействуют со слоем газовзвеси и уменьшают интенсивность ее истечения.
Изучено влияние релаксационных свойств при изменении размеров частиц на динамику ограниченного слоя газодисперсной среды. Сопоставление истечения ограниченного слоя газовзвеси с различными размерами частиц показывает, что для мелких частиц (число Стокса меньше 0,001) наблюдается аномальное явление одновременного существования ударно-волновых структур в сверх- и дозвуковом потоке газа и взвеси. С увеличением размеров дисперсных включений скачки уплотнения в области двухфазной смеси сглаживаются, а для частиц (число Стокса больше 0,1) — практически исчезают. При этом ударно-волновая конфигурация сверхзвукового газового потока на выходе из канала сохраняется, а положения и границы энергонесущих объемов газовзвеси при изменении размеров частиц близки.
Wave and relaxation effects during the outflow of a gas suspension partially filling a cylindrical channel
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1495-1506The paper is devoted to the study of wave and relaxation effects during the pulsed outflow of a gas mixture with a high content of solid particles from a cylindrical channel during its initial partial filling. The problem is formulated in a two-speed two-temperature formulation and was solved numerically by the hybrid large-particle method of the second order of approximation. The numerical algorithm is implemented in the form of parallel computing using basic Free Pascal language tools. The applicability and accuracy of the method for wave flows of concentrated gas-particles mixtures is confirmed by comparison with test asymptotically accurate solutions. The calculation error on a grid of low detail in the characteristic flow zones of a two-phase medium was 10-6 . . . 10-5.
Based on the wave diagram, the analysis of the physical pattern of the outflow of a gas suspension partially filling a cylindrical channel is performed. It is established that, depending on the degree of initial filling of the channel, various outflow modes are formed. The first mode is implemented with a small degree of loading of the high-pressure chamber, at which the left boundary of the gas-particles mixture crosses the outlet section before the arrival of the rarefaction wave reflected from the bottom of the channel. At the same time, the maximum value of the mass flow rate of the mixture is achieved. Other modes are formed in cases of a larger initial filling of the channel, when the rarefaction waves reflected from the bottom of the channel interact with the gas suspension layer and reduce the intensity of its outflow.
The influence of relaxation properties with changing particle size on the dynamics of a limited layer of a gas-dispersed medium is studied. Comparison of the outflow of a limited gas suspension layer with different particle sizes shows that for small particles (the Stokes number is less than 0.001), an anomalous phenomenon of the simultaneous existence of shock wave structures in the supersonic and subsonic flow of gas and suspension is observed. With an increase in the size of dispersed inclusions, the compaction jumps in the region of the two-phase mixture are smoothed out, and for particles (the Stokes number is greater than 0.1), they practically disappear. At the same time, the shock-wave configuration of the supersonic gas flow at the outlet of the channel is preserved, and the positions and boundaries of the energy-carrying volumes of the gas suspension are close when the particle sizes change.
-
Компьютерное моделирование магнитных систем некоторых физических установок
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 189-198В данной работе приводятся результаты численного моделирования сверхпроводящей магнитной фокусирующей системы. При моделировании этой системы проводился дополнительный контроль точности аппроксимации условия u(∞)=0 с использованием метода Ричардсона. В работе представлены также некоторые результаты сравнения расчетного распределения магнитного поля с проведенными измерениями поля модифицированного магнита СП-40 физической установки «МАРУСЯ». Полученные результаты расчетов магнитных систем используются для проведения компьютерного моделирования физических установок и эксперимента на них, а в последующем, после проведения сеансов набора физических данных, будут использованы для обработки эксперимента.
Computer modeling of magnet systems for physical setups
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 189-198Просмотров за год: 4. Цитирований: 2 (РИНЦ).This work gives results of numerical simulation of a superconducting magnetic focusing system. While modeling this system, special care was taken to achieve approximation accuracy over the condition u(∞)=0 by using Richardson method. The work presents the results of comparison of the magnetic field calculated distribution with measurements of the field performed on a modified magnet SP-40 of “MARUSYA” physical installation. This work also presents some results of numeric analysis of magnetic systems of “MARUSYA” physical installation with the purpose to study an opportunity of designing magnetic systems with predetermined characteristics of the magnetic field.
-
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
Ключевые слова: automatic relevance determination, Bayesian deep neural networks, truncated lognormal variational approximation, macroscopic image.
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
-
Применение алгоритма Random Forest для построения локального оператора, уточняющего результаты расчетов в задачах внешней аэродинамики
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 761-778При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.
В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.
Ключевые слова: пристенная декомпозиция, пристенные функции, вычислительная аэродинамика, случайный лес, машинное обучение, турбулентность.
Application of Random Forest to construct a local operator for flow fields refinement in external aerodynamics problems
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 761-778Numerical modeling of turbulent flows requires finding the balance between accuracy and computational efficiency. For example, DNS and LES models allow to obtain more accurate results, comparing to RANS models, but are more computationally expensive. Because of this, modern applied simulations are mostly performed with RANS models. But even RANS models can be computationally expensive for complex geometries or series simulations due to the necessity of resolving the boundary layer. Some methods, such as wall functions and near-wall domain decomposition, allow to significantly improve the speed of RANS simulations. However, they inevitably lose precision due to using a simplified model in the near-wall domain. To obtain a model that is both accurate and computationally efficient, it is possible to construct a surrogate model based on previously made simulations using the precise model.
In this paper, an operator is constructed that allows reconstruction of the flow field obtained by an accurate model based on the flow field obtained by the simplified model. Spalart–Allmaras model with approximate nearwall domain decomposition and Spalart–Allmaras model resolving the near-wall region are taken as the simplified and the base models respectively. The operator is constructed using a local approach, i. e. to reconstruct a point in the flow field, only features (flow variables and their derivatives) at this point in the field are used. The operator is constructed using the Random Forest algorithm. The efficiency and accuracy of the obtained surrogate model are demonstrated on the supersonic flow over a compression corner with different values for angle $\alpha$ and Reynolds number. The investigation has been conducted into interpolation and extrapolation both by $Re$ and $\alpha$.
-
Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.
Ключевые слова: субградиентный метод, липшицева функция, острый минимум, шаг Б. Т. Поляка, квазивыпуклая функция, слабовыпуклая функция.
Subgradient methods with B.T. Polyak-type step for quasiconvex minimization problems with inequality constraints and analogs of the sharp minimum
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 105-122In this paper, we consider two variants of the concept of sharp minimum for mathematical programming problems with quasiconvex objective function and inequality constraints. It investigated the problem of describing a variant of a simple subgradient method with switching along productive and non-productive steps, for which, on a class of problems with Lipschitz functions, it would be possible to guarantee convergence with the rate of geometric progression to the set of exact solutions or its vicinity. It is important that to implement the proposed method there is no need to know the sharp minimum parameter, which is usually difficult to estimate in practice. To overcome this problem, the authors propose to use a step adjustment procedure similar to that previously proposed by B. T. Polyak. However, in this case, in comparison with the class of problems without constraints, it arises the problem of knowing the exact minimal value of the objective function. The paper describes the conditions for the inexactness of this information, which make it possible to preserve convergence with the rate of geometric progression in the vicinity of the set of minimum points of the problem. Two analogs of the concept of a sharp minimum for problems with inequality constraints are considered. In the first one, the problem of approximation to the exact solution arises only to a pre-selected level of accuracy, for this, it is considered the case when the minimal value of the objective function is unknown; instead, it is given some approximation of this value. We describe conditions on the inexact minimal value of the objective function, under which convergence to the vicinity of the desired set of points with a rate of geometric progression is still preserved. The second considered variant of the sharp minimum does not depend on the desired accuracy of the problem. For this, we propose a slightly different way of checking whether the step is productive, which allows us to guarantee the convergence of the method to the exact solution with the rate of geometric progression in the case of exact information. Convergence estimates are proved under conditions of weak convexity of the constraints and some restrictions on the choice of the initial point, and a corollary is formulated for the convex case when the need for an additional assumption on the choice of the initial point disappears. For both approaches, it has been proven that the distance from the current point to the set of solutions decreases with increasing number of iterations. This, in particular, makes it possible to limit the requirements for the properties of the used functions (Lipschitz-continuous, sharp minimum) only for a bounded set. Some computational experiments are performed, including for the truss topology design problem.
-
Расчет сигнала и шума при анализе райсовских данных путем комбинирования метода максимума правдоподобия и метода моментов
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 511-523В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях распределения Райса, основанный на комбинировании метода максимума правдоподобия и метода моментов. При этом определение искомых параметров задачи осуществляется посредством обработки выборочных измерений амплитуды анализируемого райсовского сигнала. Получена система уравнений для искомых параметров сигнала и шума, а также представлены результаты численных расчетов, подтверждающие эффективность предлагаемого метода. Показано, что решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи. В частном случае малой величины отношения сигнала к шуму получено аналитическое решение задачи. В работе проведено исследование зависимости погрешности и разброса расчетных данных для искомых параметров от количества измерений в экспериментальной выборке. Как показали численные эксперименты, величина разброса расчетных значений искомых параметров сигнала и шума, полученных предлагаемым методом, изменяется обратно пропорционально количеству измерений в выборке. Проведено сопоставление точности оценивания искомых райсовских параметров предлагаемым методом и ранее развитым вариантом метода моментов. Решаемая в работе задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации, а также при решении многих других научных и прикладных задач, адекватно описываемых статистической моделью Райса.
Ключевые слова: функция плотности вероятности, распределение Райса, метод максимума правдоподобия, метод моментов, выборки измерений, отношение сигнала к шуму.
Signal and noise calculation at Rician data analysis by means of combining maximum likelihood technique and method of moments
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 511-523Просмотров за год: 11.The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
Ключевые слова: coffee berry disease (CBD), Colletotrichum kahawae pathogen, epidemic mathematical model, sensitivity analysis, Shehu transformation, Akbari – Ganji’s method (AGM), Pade approximation method, numerical simulation.
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"