Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Развитие берегового откоса в русле трапециевидного канала
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.
На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.
Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.
Bank slope evolution in trapezoidal channel riverbed
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 581-592A mathematical model is formulated for the coastal slope erosion of sandy channel, which occurs under the action of a passing flood wave. The moving boundaries of the computational domain — the bottom surface and the free surface of the hydrodynamic flow — are determined from the solution of auxiliary differential equations. A change in the hydrodynamic flow section area for a given law of change in the flow rate requires a change in time of the turbulent viscosity averaged over the section. The bottom surface movement is determined from the Exner equation solution together with the equation of the bottom material avalanche movement. The Exner equation is closed by the original analytical model of traction loads movement. The model takes into account transit, gravitational and pressure mechanisms of bottom material movement and does not contain phenomenological parameters.
Based on the finite element method, a discrete analogue of the formulated problem is obtained and an algorithm for its solution is proposed. An algorithm feature is control of the free surface movement influence of the flow and the flow rate on the process of determining the flow turbulent viscosity. Numerical calculations have been carried out, demonstrating qualitative and quantitative influence of these features on the determining process of the flow turbulent viscosity and the channel bank slope erosion.
Data comparison on bank deformations obtained as a result of numerical calculations with known flume experimental data showed their agreement.
-
Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения, косимметрия, сосуществование видов, метод конечных разностей.
The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671Просмотров за год: 2. Цитирований: 1 (РИНЦ).We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.
-
Численное моделирование распространения прямоточных волн внутрипластового горения в инверсном режиме
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 993-1006Одной из перспективных технологий повышения нефтеотдачи при разработке нетрадиционных нефтяных пластов является метод термогазового воздействия. Метод основан на закачке в пласт кислородосодержащей смеси и ее трансформации в высокоэффективный смешивающийся с пластовой нефтью вытесняющий агент за счет самопроизвольных внутрипластовых окислительных процессов. В ряде случаев этот метод обладает большим потенциалом по сравнению с другими способами повышения нефтеотдачи. В данной работе рассматриваются некоторые вопросы распространения волн внутрипластового горения. В зависимости от параметров коллектора и закачиваемой смеси такие волны могут распространяться в различных режимах. В данной работе рассматривается только прямоточный инверсный режим распространения. В этом режиме волна горения распространяется в направлении течения окислителя и фронт реакции отстает от тепловой волны, в которой вещество (углеводородные фракции, пористый скелет и др.) прогреваются до температур, достаточных для протекания реакции окисления. В работе представлены результаты аналитического исследования и численного моделирования структуры инверсной волны внутрипластового горения при двухфазном течении в пористом слое. Сделаны упрощающие предположения о теплофизических свойствах флюидных фаз, которые позволяют, с одной стороны, сделать модель внутрипластового горения обозримой для анализа, а с другой — передать основные особенности этого процесса. Рассмотрено решение типа «бегущая волна» и указаны условия его реализации. Выделено два режима распространения инверсных волн внутрипластового горения: гидродинамический и кинетический. Численное моделирование распространения волны внутрипластового горения проводилось с помощью термогидродинамического симулятора, разработанного для численного интегрирования неизотермических многокомпонентных фильтрационных течений, сопровождающихся фазовыми переходами и химическими реакциями.
Ключевые слова: внутрипластовое горение, неизотермическая многокомпонентная фильтрация, инверсный режим горения.
Numerical simulation of inverse mode propagation in-situ combustion direct-flow waves
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 993-1006One of the promising technologies for enhanced oil recovery in the development of unconventional oil reservoirs is the thermo-gas method. The method is based on the injection of an oxygen-containing mixture into the formation and its transformation into a highly efficient displacing agent miscible with the formation of oil due to spontaneous in-situ oxidative processes. In some cases, this method has great potential compared to other methods of enhanced oil recovery. This paper discusses some issues of the propagation of in-situ combustion waves. Depending on the parameters of the reservoir and the injected mixture, such waves can propagate in different modes. In this paper, only the direct-flow inverse propagation mode is considered. In this mode, the combustion wave propagates in the direction of the oxidant flow and the reaction front lags behind the heatwave, in which the substance (hydrocarbon fractions, porous skeleton, etc.) is heated to temperatures sufficient for the oxidation reaction to occur. The paper presents the results of an analytical study and numerical simulation of the structure of the inverse wave of in-situ combustion. in two-phase flow in a porous layer. Some simplifying assumptions about the thermal properties of fluid phases was accepted, which allow, on the one hand, to modify the in-situ combustion model observable for analysis, and with another is to convey the main features of this process. The solution of the “running wave” type is considered and the conditions of its implementation are specified. Selected two modes of reaction trailing front regime in-situ combustion waves: hydrodynamic and kinetic. Numerical simulation of the in-situ combustion wave propagation was carried out with using the thermohydrodynamical simulator developed for the numerical integration of non-isothermal multicomponent filtration flows accompanied by phase transitions and chemical reaction.
-
Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.
Ключевые слова: численные методы, дифракция, фотонные кристаллы, спектральное разложение, теорема сложения.
Method of self-consistent equations in solving problems of wave scattering on systems of cylindrical bodies
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 725-733One of the numerical methods for solving problems of scattering of electromagnetic waves by systems formed by parallel oriented cylindrical elements — two-dimensional photonic crystals — is considered. The method is based on the classical method of separation of variables for solving the wave equation. Тhe essence of the method is to represent the field as the sum of the primary field and the unknown secondary scattered on the elements of the medium field. The mathematical expression for the latter is written in the form of infinite series in elementary wave functions with unknown coefficients. In particular, the field scattered by N elements is sought as the sum of N diffraction series, in which one of the series is composed of the wave functions of one body, and the wave functions in the remaining series are expressed in terms of the eigenfunctions of the first body using addition theorems. From satisfying the boundary conditions on the surface of each element we obtain systems of linear algebraic equations with an infinite number of unknowns — the required expansion coefficients, which are solved by standard methods. A feature of the method is the use of analytical expressions describing diffraction by a single element of the system. In contrast to most numerical methods, this approach allows one to obtain information on the amplitude-phase or spectral characteristics of the field only at local points of the structure. The absence of the need to determine the field parameters in the entire area of space occupied by the considered multi-element system determines the high efficiency of this method. The paper compares the results of calculating the transmission spectra of two-dimensional photonic crystals by the considered method with experimental data and numerical results obtained using other approaches. Their good agreement is demonstrated.
-
Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.
Diffusion–reaction–advection equations for the predator–prey system in a heterogeneous environment
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.
-
Анализ дисперсионных характеристик металлических фотонных кристаллов методом разложения
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1059-1068Рассматривается метод изучения дисперсионных характеристик фотонных кристаллов — сред с периодически меняющейся в пространстве диэлектрической проницаемостью. Метод основывается на представлении волновых функций и диэлектрической проницаемости периодической среды в виде рядов Фурье и последующей их подстановки в волновое уравнение, приводящей к формулировке дисперсионного уравнения. Пользуясь последним, для каждого значения волнового вектора можно определить набор собственных частот, каждая из которых, являясь непрерывной функцией волнового числа, образует отдельную дисперсионную кривую. Коэффициенты фурье-разложения диэлектрической проницаемости, зависящие от векторов обратной решетки фотонного кристалла, определяются на основе данных о геометрических характеристиках элементов, образующих кристалл, их электрофизических свойствах и плотности заполнения кристалла. Решение найденного дисперсионного уравнения позволяет получить полную информацию о количестве мод, распространяющихся в периодической структуре на различных частотах, и о возможности формирования в ней запрещенных зон — диапазонов частот, в пределах которых волновое распространение через фотонный кристалл невозможно. Основное внимание в работе уделяется приложению данного метода к анализу дисперсионных свойств металлических фотонных кристаллов. Сложности, возникающие в данном случае из-за наличия собственных дисперсионных свойств металлов, образующих элементы кристалла, преодолеваются аналитическим описанием их диэлектрической проницаемости, основывающимся на модели свободных электронов. В итоге формулируется дисперсионное уравнение, численное решение которого легко алгоритмизируется, что позволяет определять дисперсионные характеристики металлических фотонных кристаллов с произвольными параметрами. В работе сопоставляются полученные по данной методике результаты расчета дисперсионных диаграмм, характеризующих двумерные металлические фотонные кристаллы, с экспериментальными данными и численными результатами, полученными с использованием метода самосогласованных уравнений. Демонстрируется их хорошее согласие.
Ключевые слова: численные методы, фотонные кристаллы, зоны Бриллюэна, дисперсионные характеристики, запрещенные зоны, спектр.
Analysis of the dispersion characteristics of metallic photonic crystals by the plane-wave expansion method
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1059-1068A method for studying the dispersion characteristics of photonic crystals — media with a dielectric constant that varies periodically in space — is considered. The method is based on the representation of the wave functions and permittivity of a periodic medium in the form of Fourier series and their subsequent substitution into the wave equation, which leads to the formulation of the dispersion equation. Using the latter, for each value of the wave vector it is possible determined a set of eigen frequencies. Each of eigen frequency forms a separate dispersion curve as a continuous function of the wave number. The Fourier expansion coefficients of the permittivity, which depend on the vectors of the reciprocal lattice of the photonic crystal, are determined on the basis of data on the geometric characteristics of the elements that form the crystal, their electrophysical properties and the density of the crystal. The solution of the dispersion equation found makes it possible to obtain complete information about the number of modes propagating in a periodic structure at different frequencies, and about the possibility of forming band gaps, i.e. frequency ranges within which wave propagation through a photonic crystal is impossible. The focus of this work is on the application of this method to the analysis of the dispersion properties of metallic photonic crystals. The difficulties that arise in this case due to the presence of intrinsic dispersion properties of the metals that form the elements of the crystal are overcome by an analytical description of their permittivity based on the model of free electrons. As a result, a dispersion equation is formulated, the numerical solution of which is easily algorithmized. That makes possible to determine the dispersion characteristics of metallic photonic crystals with arbitrary parameters. Obtained by this method the results of calculation of dispersion diagrams, which characterize two-dimensional metal photonic crystals, are compared with experimental data and numerical results obtained using the method of self-consistent equations. Their good agreement is demonstrated.
-
Алгоритм идентификации вихрей по векторам скорости течения на основе простейшей математической модели вихревой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1477-1493Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.
Ключевые слова: вихревые структуры, алгоритм идентификации, системы точечных вихрей, метод градиентного спуска.
Algorithm for vortices identification based on flow velocity vectors using the simplest mathematical model of vortex dynamics
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1477-1493An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.
-
Хаотизация течения под действием объемной силы
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.
Ключевые слова: турбулентность, завихренность, энстрофия, палинстрофия, скорость диссипации, схема КАБАРЕ, схема МакКормака, пакет OpenFOAM.
Сhaotic flow evolution arising in a body force field
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.
Keywords: turbulence, vorticity, enstrophy, palinstrophy, dissipation rate, CABARET scheme, McCormack scheme, OpenFOAM. -
Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.
Ключевые слова: эволюция микробных популяций, математическое моделирование, функция Ляпунова, ограниченное глобально притягивающее множество.
The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190Просмотров за год: 8. Цитирований: 3 (РИНЦ).A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.
-
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
Numerical simulation of air cooling the tank to desublimate components of the gas mixture
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529Просмотров за год: 3. Цитирований: 1 (РИНЦ).For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"